Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{x+4}=\frac{5}{6}=>6x=5\left(x+4\right)=5x+20\)
\(=>6x-5x=20=>x=20\)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
a) \(x-\frac{2}{5}=\frac{5}{7}\)
\(x=\frac{2}{5}+\frac{5}{7}\)
\(x=\frac{14}{35}+\frac{25}{35}=\frac{39}{35}\)
b)
\(\frac{-2}{5}x=\frac{4}{15}\)
\(x=\frac{4}{15}:-\frac{2}{5}\)
\(x=\frac{4}{15}\cdot-\frac{5}{2}=-\frac{2}{3}\)
c) \(2x\left(x-\frac{1}{7}\right)=2x^2-\frac{2x}{7}\)
d) \(\frac{1}{2}+\frac{3}{4}x=\frac{1}{4}\)
\(\frac{3}{4}x=\frac{1}{4}-\frac{1}{2}\)
\(\frac{3}{4}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}\cdot\frac{4}{3}=-\frac{1}{3}\)
f) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{5}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{5}=\frac{31}{60}\)
\(x=\frac{31}{60}-\frac{2}{5}=\frac{7}{60}\)
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
a: =>x-8/5=1/20-1/10=-1/20
=>x=-0,05+1,6=1,55
b: =>x-3/2=4/3 hoặc x-3/2=-4/3
=>x=17/6 hoặc x=1/6
c: =>\(\left|x-\dfrac{1}{3}\right|=\dfrac{5}{2}-\dfrac{1}{4}+\dfrac{2}{3}=\dfrac{35}{12}\)
=>x-1/3=35/12 hoặc x-1/3=-35/12
=>x=39/12=13/4 hoặc x=-31/12
d: =>|x-5/8|=3/4
=>x-5/8=3/4 hoặc x-5/8=-3/4
=>x=11/8 hoặc x=-1/8
a) Ta có:
\(\frac{x}{x+4}=\frac{5}{6}\)
\(\Rightarrow6x=5\left(x+4\right)\)
\(\Rightarrow6x=5x+20\)
\(\Rightarrow5x+20-6x=0\)
\(-x=-20\)
\(x=20\)
b)Ta có: \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-21-5x-25=0\)
\(2x=46\)
\(x=23\)
c)Ta có: \(\frac{x+4}{20}=\frac{5}{20}\)
\(\Rightarrow x+4=5\)
\(\Rightarrow x=1\)