\(\frac{x}{x+3}\)+\(\frac{x}{x-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2021

a, \(A=\left(\frac{x}{x+3}+\frac{x}{x-3}-\frac{2}{x^2-9}\right)\frac{x+3}{2x-2}\)

\(=\left(\frac{x\left(x-3\right)+x\left(x+3\right)-2}{\left(x+3\right)\left(x-3\right)}\right)\frac{x+3}{2x-2}\)

\(=\frac{x^2-3x+x^2+3x-2}{\left(x-3\right)\left(x+3\right)}\frac{x+3}{2\left(x-1\right)}=\frac{2x^2-2}{2\left(x-3\right)\left(x-1\right)}\)

\(=\frac{2\left(x-1\right)\left(x+1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{x+1}{x-3}\)

Ta co A = 2 hay \(\frac{x+1}{x-3}=2\)ĐK : \(x\ne3\)

\(\Rightarrow x+1=2x-6\Leftrightarrow-x=-7\Leftrightarrow x=7\)

Vậy với x = 7 thì A = 2 

b, Ta có A < 0 hay \(\frac{x+1}{x-3}< 0\) 

TH1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}}}\)vô lí 

TH2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Leftrightarrow-1< x< 3}}\)

3 tháng 4 2021

a, \(A=\left(\frac{x}{x+3}+\frac{x}{x-3}-\frac{2}{x^2-9}\right).\frac{x+3}{2x-2}\)

\(=\frac{x^2-3x+x^2+3x-2}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2\left(x-1\right)}=\frac{2\left(x-1\right)\left(x+1\right)\left(x+3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+3\right)}=\frac{x+1}{x-3}\)

Ta có : A = 2 hay \(\frac{x+1}{x-3}=2\Rightarrow x+1=2x-6\Leftrightarrow-x=-7\Leftrightarrow x=7\)(tmđk )

b, \(A< 0\Rightarrow\frac{x+1}{x-3}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}}}\)( vô lí )

TH2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow-1< x< 3}}\)

Kết hợp với đk ta được -1 < x < 3 ; x khác 1 

5 tháng 6 2020

a) \(ĐKXĐ:x\ne\pm3\)

b) \(A=\left(\frac{x}{x+3}+\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{x^2-9}\right):\frac{3}{x+3}\)

\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\left(x+3\right)\left(x^2-9\right)}\right):\frac{3}{x+3}\)

\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{x^2+3x+9}{\left(x+3\right)^2}\right):\frac{3}{x+3}\)

\(\Leftrightarrow A=\frac{x^2+3x-x^2-3x-9}{\left(x+3\right)^2}:\frac{3}{x+3}\)

\(\Leftrightarrow A=\frac{-9\left(x+3\right)}{3\left(x+3\right)^2}\)

\(\Leftrightarrow A=\frac{-3}{x+3}\)

c) Tại \(x=-\frac{1}{2}\)

\(\Leftrightarrow A=\frac{-3}{-\frac{1}{2}+3}\)

\(\Leftrightarrow A=\frac{-6}{5}\)

d) Để \(A>0\)

\(\Leftrightarrow\frac{-3}{x+3}>0\)

\(\Leftrightarrow x+3< 0\)(Vì -3 < 0)

\(\Leftrightarrow x< -3\)

e) +) Với \(A>\frac{-1}{2}\)

\(\Leftrightarrow\frac{-3}{x+3}>-\frac{1}{2}\)

\(\Leftrightarrow-6>-x-3\)

\(\Leftrightarrow x>3\)(tm)

+) Với \(A< -\frac{1}{2}\)

\(\Leftrightarrow\frac{-3}{x+3}< -\frac{1}{2}\)

\(\Leftrightarrow-6< -x-3\)

\(\Leftrightarrow x< 3\)(chú ý : \(x\ne-3\))

+) Với \(A=-\frac{1}{2}\)

\(\Leftrightarrow-\frac{3}{x+3}=-\frac{1}{2}\)

\(\Leftrightarrow x+3=6\)

\(\Leftrightarrow x=3\)(ktm)

Vậy \(\orbr{\begin{cases}A>-\frac{1}{2}\\A< -\frac{1}{2}\end{cases}}\)

31 tháng 3 2018

\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)

\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)

\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)

\(A=\frac{-1}{x^2}\)

31 tháng 3 2018

Ta có :\(x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)

\(\Rightarrow A=\frac{-1}{2^2}\)

\(A=\frac{-1}{4}\)

NV
8 tháng 3 2020

\(A=\left(\frac{-\left(x-3\right)}{\left(x+3\right)}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right).\left(\frac{x+3}{3x^2}\right)\)

\(=\left(-1+\frac{x}{x+3}\right)\left(\frac{x+3}{3x^2}\right)=\frac{-3}{\left(x+3\right)}.\frac{\left(x+3\right)}{3x^2}=\frac{-1}{x^2}\)

\(A< 0\Rightarrow\frac{-1}{x^2}< 0\Rightarrow-1< 0\) (luôn đúng)

Vậy \(x\ne0;x\ne\pm3\) thì \(A< 0\)