K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

Suy ra :

+) \(\frac{x}{7}=2\Leftrightarrow x=14\)

+) \(\frac{y}{13}=2\Leftrightarrow y=26\)

Vậy x = 14 ; y = 26

b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

Suy ra :

+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)

+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)

Vậy x = - 51 ; y = - 9

c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Suy ra :

+) \(\frac{x}{19}=2\Leftrightarrow x=38\)

+) \(\frac{y}{21}=2\Leftrightarrow y=42\)

Vậy x = 38 ; y = 42

d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Suy ra :

+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)

Vậy x =\(\pm\)6 ; y =\(\pm\)8

8 tháng 10 2020

a,AD t/c DTS bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)

b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

AD t/c DTS bằng nhua ta có:

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)

c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

AD t/c DTS bằng nhau ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)

d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)

\(\Rightarrow x^2=9k;y^2=16k\)

\(\Rightarrow x^2+y^2=9k+16k=25k=100\)

\(\Rightarrow k=4\)

\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

16 tháng 10 2019

1. Tìm x,y biết

a):\(\frac{x}{9}=\frac{13}{6}\Rightarrow6x=13.9\Rightarrow6x=117\Rightarrow x=\frac{117}{6}=\frac{39}{2}\)

b)\(\frac{17}{x}=\frac{51}{57}\Rightarrow51x=17.57\Rightarrow51x=969\Rightarrow x=\frac{969}{51}=19\)

c)\(\frac{x+2}{3}=\frac{4}{9}\Rightarrow9\left(x+2\right)=3.4\Rightarrow9x+18=12\)

\(\Rightarrow9x=12-18\Rightarrow9x=-6\Rightarrow x=\frac{-6}{9}=\frac{-2}{3}\)

d)\(\frac{x+1}{5}=\frac{125}{\left(x+1\right)^2}\Rightarrow5.125=\left(x+1\right)\left(x+1\right)^2\)

\(\Rightarrow5^4=\left(x+1\right)^3\)

2.Lập tỉ lệ thức:

a) Từ 4 số trên, ta có đẳng thức sau: \(2.14=7.4\)

Vậy, các tỉ lệ thức lập được là: \(\frac{2}{7}=\frac{4}{14};\frac{7}{2}=\frac{14}{4};\frac{2}{4}=\frac{7}{14};\frac{4}{2}=\frac{14}{7}\)

b) Từ 4 số trên, ta có đẳng thức sau: \(4.12=6.8\)

Vậy, các tỉ lệ thức lập được là: \(\frac{4}{6}=\frac{8}{12};\frac{6}{4}=\frac{12}{8};\frac{4}{8}=\frac{6}{12};\frac{8}{4}=\frac{12}{6}\)

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5