\(\frac{x}{3}=\frac{y}{7};xy=84\)

b) \(\frac{1+3y}{12}=\f...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

a) Ta có:

\(\frac{x}{3}=\frac{y}{7}\)\(x.y=84.\)

Đặt \(\frac{x}{3}=\frac{y}{7}=k.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)

+ Có: \(x.y=84\)

\(\Rightarrow3k.7k=84\)

\(\Rightarrow21.k^2=84\)

\(\Rightarrow k^2=84:21\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k^2=\left(\pm2\right)^2\)

\(\Rightarrow k=\pm2.\)

+ TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)

+ TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)

Chúc bạn học tốt!

23 tháng 7 2020

Nếu đã nhân tử mà không nhân mãu thì 2 p/s sau không bằng phân số trước được nhé ? Trừ 1 vào trường hợp đặc biệt :v

23 tháng 7 2020

- Cô giáo chọn đề chuyên cho ôn hè nó vậy đấy cậu :(

khocroi

4 tháng 12 2015

Gọi x/3=y/7=k nên x=3k; y=7k

mà x*y=84

nên 3k*7k=84

21*k2=84

k2=84/21

k2=4 nên k=2 hoặc k=-2

Nếu k=2 thì x=3*2=6; y=7*2=14

Nếu k=-2 thì x=-2*3=-6; y=-2*7=-14

Vậy cặp số x;y là: (6;14);(-6;-14)

7 tháng 1 2018

\(\frac{x-3}{x+5}=\frac{5}{7}\)

\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)

\(\Leftrightarrow7x-21=5x+25\)

\(\Leftrightarrow7x-5x=25+21\)

\(\Leftrightarrow2x=46\)

\(\Leftrightarrow x=23\)

Vậy ..........

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)

\(\Leftrightarrow141k^2=141\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow k=\pm1\)

TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)

TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy.....

9 tháng 1 2020

a)

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)

\(\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{4}=1\Rightarrow y=4.1=4\)

\(\frac{z}{5}=1\Rightarrow z=5.1=5\)

Vậy x = 3

y=4

z=5

9 tháng 7 2018

a ) 

Ta có : 

\(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

\(\Rightarrow\frac{4\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)

\(\Rightarrow\frac{4+20y}{20x}=\frac{5+35y}{20x}\)

\(\Rightarrow4+20y=5+35y\)

\(\Rightarrow35y-20y=4-5\)

\(\Rightarrow15y=4-5\)

\(\Rightarrow15y=-1\)

\(\Rightarrow y=-\frac{1}{15}\)

Lại có : 

\(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3.-\frac{1}{15}}{12}=\frac{1+5.-\frac{1}{15}}{5x}\)

\(\Rightarrow\frac{1-\frac{1}{5}}{12}=\frac{1-\frac{1}{3}}{5x}\)

\(\Rightarrow\frac{4}{5}:12=\frac{4}{3}:5x\)

\(\Rightarrow\frac{1}{15}=\frac{4}{3}:5x\)

\(\Rightarrow5x=\frac{4}{3}:\frac{1}{15}\)

\(\Rightarrow5x=20\)

\(\Rightarrow x=4\)

Vậy \(x=4;y=-\frac{1}{15}\)

9 tháng 7 2018

a) Xét \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

\(\Rightarrow\frac{4x\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)

\(\Rightarrow4x\left(1+5y\right)=5\left(1+7y\right)\)

\(\Rightarrow4+20y=5+35y\)

\(\Rightarrow35y-20y=4-5\)

\(\Rightarrow15y=-1\)

\(\Rightarrow y=\frac{-1}{15}\)

Xét \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)

\(\Rightarrow\frac{1+\frac{-1}{5}}{12}=\frac{1+\frac{-1}{3}}{5x}\)

\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)

\(\Rightarrow\frac{4}{5}:12=\frac{2}{3}:5x\)

\(\Rightarrow\frac{1}{15}=\frac{2}{3}:5x\)

\(\Rightarrow5x=\frac{2}{3}:\frac{1}{15}\)

\(\Rightarrow5x=\frac{30}{3}\)

\(\Rightarrow x=\frac{30}{3}:5\)

\(\Rightarrow x=\frac{30}{3}.\frac{1}{5}\)

\(\Rightarrow x=2\)

Vậy x = 2 ; y = \(\frac{-1}{15}\)

ko ghi lại đề

\(\Rightarrow\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1+7y}{\left(5x-4x\right)}=-\frac{2y}{x}\)

\(\Rightarrow\frac{\left(1+5y\right)}{5}=-2y\)

Ta đc \(y=\frac{-1}{15}\)

\(\Rightarrow x=2\)