Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\)
\(\Rightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\frac{51-x}{49}+1\)\(=-5+5\)
\(\Rightarrow\frac{59-x+49}{41}+\frac{57-x+43}{43}+\frac{55-x+45}{45}+\frac{53-x+47}{47}\)\(+\frac{51-x+49}{49}=0\)
\(\Rightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
Vì \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
\(=\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\)
\(\frac{51-x}{49}+1=-5+5\)
đoạn này có 5 là do mik mượn 5 con 1 khi đó nha
\(=\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\)
\(\frac{100-x}{49}=0\)
\(=\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
mà \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}< 0\)
nên 100-x=0
còn lại bn từ lm
mấy câu này dễ mà :V câu a+c lấy mỗi phân số trừ cho 1 ra tử chung rút ra thì tính b+d thì cộng một tử chung rồi lại tính tiếp thôi
a, Mình nghĩ là đề sai .
b, Ta có : \(\frac{x-45}{55}+\frac{x-47}{45}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{45}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-45}{55}-\frac{55}{55}+\frac{x-47}{53}-\frac{53}{53}=\frac{x-55}{45}-\frac{45}{45}+\frac{x-53}{47}-\frac{47}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
=> \(x=100\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{100\right\}\)
c, Ta có : \(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)
=> \(\frac{2-x}{2010}-1=\frac{1-x}{2011}+\frac{-x}{2012}\)
=> \(\frac{2-x}{2010}+1=\frac{1-x}{2011}+1+\frac{-x}{2012}+1\)
=> \(\frac{2-x}{2010}+\frac{2010}{2010}=\frac{1-x}{2011}+\frac{2011}{2011}+\frac{-x}{2012}+\frac{2012}{2012}\)
=> \(\frac{2012-x}{2010}=\frac{2012-x}{2011}+\frac{2012-x}{2012}\)
=> \(\frac{2012-x}{2010}-\frac{2012-x}{2011}-\frac{2012-x}{2012}=0\)
=> \(\left(2012-x\right)\left(\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)
=> \(2012-x=0\)
=> \(x=2012\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2012\right\}\)
a) x+1/2004 + 1 + x+2/2003 +1 - x+3/2002 +1 - x+4/2001 +1
=> x+2005/2004 + x+2005/2003 - x+2005/2002 - x+2005/2001=0
=> (x + 2005) ( 1/2004+1/2003 - 1/2002 - 1/2001) =0
ta thấy 1/2004+1/2003-1/2002-1/2001 # 0
=> x+2005=0 => x=-2005
a) \(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)=-3
⇔\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)+3=0
⇔\(\frac{x+2}{2002}\)+1+\(\frac{x+5}{1999}\)+1+\(\frac{x+201}{1803}\)+1=0
⇔\(\frac{x+2004}{2002}\)+\(\frac{x+2004}{1999}\)+\(\frac{x+2004}{1803}\)=0
⇔(x+2004)(\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))=0
Mà (\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))≠0
⇒x+2004=0
⇔x=-2004
Vậy tập nghiệm của phương trình đã cho là:S={-2004}
a, <=> (59-x/41 + 1) + (57-x/43 + 1) + (55-x/45 + 1) + (53-x/47 + 1) + (51-x/49 + 1) = 0
<=> 100-x/41 + 100-x/43 + 100-x/45 + 100-x/47 + 100-x/49 = 0
<=> (100-x).(1/41+1/43+1/45+1/47+1/49) = 0
<=> 100-x=0 ( vì 1/41+1/43+1/45+1/47+1/49 > 0 )
<=> x=100
Vậy x = 100
b, <=> 2-x/2016 + 1 = (1-x/2017 + 1) + (1 - x/2018)
<=> 2018-x/2016 = 2018-x/2017 + 2018-x/2018
<=> 2018-x/2016 - 2018-x/2017 - 2018-x/2018 = 0
<=> (2018-x).(1/2016-1/2017-1/2018) = 0
<=> 2018-x=0 ( vì 1/2016-1/2017-1/2018 khác 0 )
<=> x=2018
Vậy x=2018
Tk mk nha