Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}\)
\(S=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}\)
\(S=5\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+\frac{5}{21\cdot26}\right]\)
\(S=5\left[1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right]\)
\(S=5\left[1-\frac{1}{26}\right]=5\cdot\frac{25}{26}=\frac{125}{26}\)
Bài làm
S = \(\frac{5^2}{1.6}\)+ \(\frac{5^2}{6.11}\)+ \(\frac{5^2}{11.16}\)+ \(\frac{5^2}{16.21}\)+\(\frac{5^2}{21.26}\)
S : 5 = \(\frac{5}{1.6}\)+ \(\frac{5}{6.11}\)+ \(\frac{5}{11.16}\) + \(\frac{5}{16.21}\) + \(\frac{5}{21.26}\)
S : 5 = 1 - \(\frac{1}{6}\)+ \(\frac{1}{6}\)- \(\frac{1}{11}\) + \(\frac{1}{11}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{21}\)+ \(\frac{1}{21}\)- \(\frac{1}{26}\)
S : 5 = 1 - \(\frac{1}{26}\)
S : 5 = \(\frac{25}{26}\)
S = \(\frac{125}{26}\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(C=\frac{3}{4}x\frac{4x2}{3x3}x\frac{3x5}{2x8}x...x\frac{99x101}{100x100}\)
\(C=...\) ( Tự làm tiếp )
\(E=1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x1\frac{1}{24}x...x1\frac{1}{99}\)
\(E=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x...x\frac{100}{99}\)
\(E=....\)( tương tự câu C )
Từ 1 dến 100 có 100:5=20 số chia hết cho 5
Trong đó có 100:25= 4 số chia hết cho 25
Cứ 1 số chia hết cho 5 cho ta 1 chữ số 0 tận cùng, 1 số chia hết cho 25 cho 2 chữ số 0 tận cùng
Vậy từ 1 đến 100 tích của chúng có 20+4=24 chữ số 0 tận cùng
tA CÓ :
từ 1 đến 100 có 20 số chia hết cho 5
từ 1 đến 100 có 4 số chia hết cho 25
từ 1 đến 100 có 0 số chia hết cho0 125
từ đó 100! khi phân tích là thừa số thì có 24 thừa số 5 .
mà dễ thấy 100! có thừa số 2 nhiều hơn 24(cụ thể là 97)
=>có 24 chữ số 0 tận cùng trong tích trên !
a)Gọi số mới là 664abc (0=<a,b,c=<9)
ta có 664abc chia hết cho 9 nên (6+6+4+a+b+c)\(⋮\)9 \(\Leftrightarrow\left(16+a+b+c\right)⋮9\)
mặt khác số đó còn chia hết cho 11
nên (6+4+b-6-a-c)\(⋮11\Leftrightarrow\left(4+b-a-c\right)⋮11\)mà 4+b-c-a có GTLN là 13 vậy 4+b-a-c=11
ta thấy \(0\le a,b,c\le9\Rightarrow16+a+b+c\le43\Rightarrow16+a+b+c\in\left\{9;18;27;36\right\}\)
16+a+b+c | 9 | 18 | 27 | 36 |
4+b-a-c | 11 | 11 | 11 | 11 |
b | 0(t/m) | 4,5(L) | 9(t/m) | 13,5(L) |
số đó cx chia hết cho 5 nên c=(0;5)
TH1 b=0 thì a+c=-7(vô lý)
Th2:b=9 thì a+c=2
nên c chỉ có thể là 0
với c=0 thì a=2
Vậy số thêm vào là 290 và số sau khi thêm vào là 664290
b1:
a,| 2/3 x- 3/4| +1/6= 7/6 th1:2/3 x-3/4=1 th2: 2/3 x-3/4=-1
|2/3 x-3/4|=7/6 -1/6 2/3 x=1+3/4 2/3 x=-1+3/4
| 2/3 x-3/4|=1 2/3 x=7/4 2/3 x=-1/4
x=7/4:2/3 =21/8 x=-1/4 :2/3 =-3/8
b,|x -5/24|.18/7 =-12/7 th1:x -5/24=2/3 th2:x -5/24 = -2/3
|x -5/24|=12/7 :18/7 x= 2/3+5/24 x=-2/3+5/24
|x -5/24| =2/3 x=7/8 x=-11/24
b,2
a,s manh vuon la :60.(60.2/3) =2400 (m2)
b, s con lai cua manh vuon la:2400-(2400.3/5)=960(m2)
chuc ban hoc tot
nho k cho mink nhe
b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)
a không biết
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
\(A=\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{61\times66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)