Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)
<=> 4x-16=-3x+6
<=> 4x-16+3x-6=0
<=> 7x-22=0
<=> 7x=22
<=> \(x=\frac{22}{7}\)(TMĐK)
con lựa a;b còn đâu bác lm nhé ... ko c;d dài dòng lắm bác )):
a, \(\frac{2x-3}{x+2}-\frac{x+2}{x-2}=\frac{2}{x^2-4}ĐKXĐ:x\ne\pm2\)
\(\frac{\left(2x-3\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{2}{\left(x+2\right)\left(x-2\right)}\)
Khử mẫu ta đc : \(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)^2=2\)
\(x^2-11x+2=2\)
\(x^2-11x=0\Leftrightarrow x\left(x-11\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=11\end{cases}}\)
\(a.\frac{x-6}{x-4}=\frac{x}{x-2}\\\Leftrightarrow \frac{\left(x-6\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}=\frac{x\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}\\\Leftrightarrow \left(x-6\right)\left(x-2\right)=x\left(x-4\right)\\\Leftrightarrow \left(x-6\right)\left(x-2\right)-x\left(x-4\right)=0\\ \Leftrightarrow x^2-2x-6x+12-x^2+4x=0\\\Leftrightarrow -4x+12=0\\\Leftrightarrow -4x=-12\\ \Leftrightarrow x=3\)
\(b.1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\\ \Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}+\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=0\\ \Leftrightarrow x^2-x-2x+3+2x^2-2x-5x+5-3x^2+6x+5x-10=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \)
ko bt có sai ko nữa mà mình tìm ra câu a hai nghiệm:\(\frac{-11+\sqrt{69}}{26}\)
và \(\frac{-11-\sqrt{69}}{29}\)
d) \(\frac{1}{2x-3}-\frac{3}{x.\left(2x-3\right)}=\frac{5}{x}\)
\(\Leftrightarrow\frac{x}{x.\left(2x-3\right)}-\frac{3}{x.\left(2x-3\right)}=\frac{5.\left(2x-3\right)}{x.\left(2x-3\right)}\)
\(\Leftrightarrow x-3=5.\left(2x-3\right)\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-10x=\left(-15\right)+3\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow9x=12\)
\(\Leftrightarrow x=12:9\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)
b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)
c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)
d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{1}{x^2+x+1}\)
e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x}{x+2y}\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x-2}{5}-5\)
\(\Leftrightarrow\frac{5\left(5x+2\right)}{30}-\frac{10\left(8x-1\right)}{30}=\frac{6\left(4x-2\right)}{30}-\frac{150}{30}\)
\(\Leftrightarrow25x+10-80x+10=24x-12-150\)
\(\Leftrightarrow25x-80x-24x=-12-150-10-10\)
\(\Leftrightarrow-79x=-182\)
\(\Leftrightarrow x=\frac{182}{79}\).
Vậy tập nghiệm phương trình \(s=\left\{\frac{182}{79}\right\}\)
a)\(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
\(\Leftrightarrow\frac{3\left(3x+2\right)}{6}-\frac{3x+1}{6}=\frac{10}{6}+\frac{12x}{6}\)
\(\Leftrightarrow9x+6-3x+1=10+12x\)
\(\Leftrightarrow9x-3x-12x=10-6-1\)
\(\Leftrightarrow-6x=3\)
\(\Leftrightarrow x=\frac{-1}{2}\).
Vậy tập nghiệm phương trình \(S=\left\{\frac{-1}{2}\right\}\)
a) Ta có: \(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\)
\(\Leftrightarrow\frac{3}{x^2+x-2}-\frac{1}{x-1}-\frac{-7}{x+2}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right).\left(x+2\right)}-\left[\frac{\left(x+2\right)+\left(-7\right).\left(x+1\right)}{\left(x-1\right).\left(x+2\right)}\right]=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right).\left(x+2\right)}-\frac{x+2-7x+7}{\left(x-1\right).\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3-\left(-6x+9\right)}{\left(x-1\right).\left(x+2\right)}=0\)
\(\Rightarrow3+6x-9=0\)
\(\Leftrightarrow6x-6=0\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\left(TM\right)\)
Vậy \(S=\left\{1\right\}\)
b)Ta có: \(\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{2}{x^2-2x}-\frac{1}{x}=0\)
\(\Leftrightarrow\left[\frac{x.\left(x+2\right)-\left(x-2\right)}{x.\left(x-2\right)}\right]-\frac{2}{x^2-2x}=0\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x.\left(x-2\right)}-\frac{2}{x.\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+2-2}{x.\left(x-2\right)}=0\)
\(\Rightarrow x^2+x=0\)
\(\Leftrightarrow x.\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{-1,0\right\}\)
bạn ơi đây là giải phương trình mình quên ko ghi bạn giúp mình lại với