Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9( 1/4.5 + 1/ 5.6 +.....+1/35.36)
=9 ( 1/4 - 1/5 +1/5 -1/6 +1/6 -1/7 +........+1/35-1/36 )
= 9(1/4 - 1/ 36)
=9.2/9=2
\(=\frac{219}{520}=\frac{155052}{368160}\)
\(=\frac{303}{708}=\frac{157560}{368160}\)
\(\frac{155052}{368160}< \frac{157560}{368160}\)
VẬY \(\frac{303}{708}\)LỚN HƠN
\(A=\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+\frac{4}{9\cdot11}\)
\(A=\frac{2\cdot2}{3\cdot5}+\frac{2\cdot2}{5\cdot7}+\frac{2\cdot2}{7\cdot9}+\frac{2\cdot2}{9\cdot11}\)
\(A=2\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(A=2\cdot\frac{8}{33}\)
\(A=\frac{16}{33}\)
Ta có:
\(A=\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}\)
\(A=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(A=2\cdot\frac{8}{33}\)
\(A=\frac{16}{33}\)
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)
\(=\frac{99.5}{486}\)
\(=\frac{495}{486}\)
Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)
\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)
\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)
\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)
\(A=66.\frac{13}{27}\)
\(A=\frac{286}{9}\)
sai hay đúng cx ko biết nha
\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(G=1-\frac{1}{16}\)
\(G=\frac{15}{16}\)
\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(G=1-\frac{1}{16}\)
\(G=\frac{15}{16}\)
Bước 1: \(\left(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{19\times21}\right)=\frac{1}{7}\)
Bước 2: \(x=\frac{9}{7}\div\frac{1}{7}=9\)
\(\frac{3}{5.11}+\frac{5}{11.21}+\frac{7}{21.35}+\frac{9}{35.53}=\frac{1}{2}\left(\frac{6}{5.11}+\frac{10}{11.21}+\frac{14}{21.35}+\frac{18}{35.53}\right)\)
\(=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{21}+\frac{1}{21}-\frac{1}{35}+\frac{1}{35}-\frac{1}{53}\right)=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{53}\right)=\frac{1}{2}.\frac{48}{265}=\frac{24}{265}\)
Sửa lại :
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{21}+\frac{1}{21}-\frac{1}{35}+\frac{1}{35}-\frac{1}{53}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{53}\right)=\frac{1}{2}.\frac{48}{265}=\frac{24}{265}\)