\(\frac{3+2\sqrt{2}}{1+\sqrt{2}}\)

b)     \(\fr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a) \(\frac{3+2\sqrt{2}}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2}{1+\sqrt{2}}=1+\sqrt{2}\)

b)\(\frac{4\sqrt{3}+2}{2\sqrt{3}+1}=\frac{2.\left(2\sqrt{3}+1\right)}{2\sqrt{3}+1}=2\)

c)\(\sqrt{300}-3\sqrt{10}+\sqrt{40}=10\sqrt{3}-3\sqrt{10}+2\sqrt{10}=10\sqrt{3}-\sqrt{10}\)

... dúng thì ủng hộ nha ...
Kết bạn với mình .. ;) ;)

3 tháng 7 2017

a, \(\frac{3+2\sqrt{2}}{1+\sqrt{2}}=\frac{5,828427125}{2,4142133562}\)

b, \(\frac{4\sqrt{3}+2}{2\sqrt{3}+1}=\frac{8,92820323}{4,464101615}\)

c, \(\sqrt{300}-3\sqrt{10}+\sqrt{40}=14,15823042\)

P/s; Ko chắc đâu nhé. Sai thì bỏ qua cho mình nhé, mình mới lớp 5 lên lớp 6 thôi

4 tháng 7 2017

\(a,\frac{2}{3+2\sqrt{2}}-\frac{7}{1-2\sqrt{2}}+\frac{4}{\sqrt{5}-1}+\sqrt{8}-2\)

\(=\frac{2.\left(3-2\sqrt{2}\right)}{9-8}-\frac{7.\left(1+2\sqrt{2}\right)}{1-8}+\frac{4.\left(\sqrt{5}+1\right)}{5-1}+2\sqrt{2}-2\)

\(=6-4\sqrt{2}-\frac{7.\left(1+2\sqrt{2}\right)}{-7}+\frac{4.\left(\sqrt{5}+1\right)}{4}+2\sqrt{2}-2\)

\(=6-4\sqrt{2}+1+2\sqrt{2}+\sqrt{5}+1+2\sqrt{2}-2\)

\(=6+\sqrt{5}\)

\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{5}}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{5}}{4-5}\)

\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{5}}{-1}\)

\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}-2+\sqrt{5}\)

\(=-3+\sqrt{3}+\sqrt{5}\)

\(c,\sqrt{4-2\sqrt{3}}+2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{3}\)

\(=\sqrt{3}-1+2\sqrt{3}\)

\(=-1+3\sqrt{3}\)

\(d,A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{2}}+\frac{\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{2\sqrt{3}}{\sqrt{2}}\)

\(=\sqrt{6}\)

\(e,B=\sqrt{\frac{2}{2+\sqrt{3}}}\)

Ta có \(\frac{2}{2+\sqrt{3}}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}\)

Thay lại ta được \(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

.... Đúng thì ủng hộ nha ....
 Kết bạn với mình ... ;) ;)

18 tháng 7 2019

MN ƠI GIÚP MK NHA

25 tháng 7 2018

Đề bài là Rút gọn biểu thức nha . Mình quên ghi ^^

25 tháng 7 2018

\(A=\sqrt{80}+\sqrt{45}+\sqrt{5}=\sqrt{16.5}+\sqrt{9.5}+\sqrt{5}\)

\(=4\sqrt{5}+3\sqrt{5}+\sqrt{5}=8\sqrt{5}\)

\(B=\frac{5}{\sqrt{10}}+3,5\sqrt{40}=\sqrt{\frac{25}{10}}+3,5\sqrt{16.2,5}\)

\(=\sqrt{2,5}+3,5.4\sqrt{2,5}=15\sqrt{2,5}\)

\(C=\frac{1}{\sqrt{3}-2}+\frac{\sqrt{300}}{10}-\sqrt{12}\)

\(=\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{\sqrt{100.3}}{10}-\sqrt{4.3}\)

\(=-\sqrt{3}-2+\sqrt{3}-2\sqrt{3}=-2\sqrt{3}-2\)

\(D=4\sqrt{x}+2\sqrt{x^2}-\sqrt{16x}=4\sqrt{x}+2x-4\sqrt{x}=2x\) ( do \(x\ge0\))

\(F=\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}.\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=\sqrt{a}\)

mk chỉnh đề

\(E=\sqrt{25x+25}-\sqrt{9x+9}+\sqrt{4x+4}\)

\(=\sqrt{25\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}\)

\(=5\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\)

\(G=\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{2}{\sqrt{5}-\sqrt{7}}=\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}-\frac{2\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)

\(=\sqrt{3}-\sqrt{5}-\sqrt{5}-\sqrt{7}=\sqrt{3}-\sqrt{7}\)

18 tháng 9 2019

a)\(\frac{3\sqrt{6}-\sqrt{2}}{1-3\sqrt{3}}=\frac{3\sqrt{3}.\sqrt{2}-\sqrt{2}}{1-3\sqrt{3}}=\frac{\sqrt{2}.\left(3\sqrt{3}-1\right)}{-\left(3\sqrt{3}-1\right)}=-\sqrt{2}\)

b)\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}=\frac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2.\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{5}}{2}\)

c)\(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}\)

d)\(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{5^2.6}-\sqrt{6^2.5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\sqrt{5}-\sqrt{30}.\sqrt{6}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\left(\sqrt{5}-\sqrt{6}\right)}{\sqrt{5}-\sqrt{6}}=\sqrt{30}\)

e)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{2^2.3}-\sqrt{3^2.2}}{\sqrt{6}}=\frac{\sqrt{6}.\sqrt{2}-\sqrt{6}.\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{6}.\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}}=\sqrt{2}-\sqrt{3}\)

f)\(\frac{6\sqrt{2}-4}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{16}}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{2}.2\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}.\left(6-2\sqrt{2}\right)}{\sqrt{2}}=6-2\sqrt{2}\)

g)\(\frac{6-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{36}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.2\sqrt{3}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.\left(2\sqrt{3}-5\right)}{\sqrt{3}}=2\sqrt{3}-5\)

19 tháng 9 2019

Cảm ơn bạn nha

AH
Akai Haruma
Giáo viên
17 tháng 5 2020

h)

\(H=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2-\sqrt{3})(2+\sqrt{3})}}=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=2\sqrt{3}\)

i)

\(I=\frac{2+\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3.1}}}+\frac{2-\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3.1}}}=\frac{2+\sqrt{3}}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{(\sqrt{3}-1)^2}}\)

\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-(\sqrt{3}-1)}=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(=\frac{(2+\sqrt{3})(3-\sqrt{3})+(2-\sqrt{3})(3+\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}=\frac{6}{6}=1\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2020

ê)

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+1+2(\sqrt{2}+\sqrt{5})}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+1+2(\sqrt{2}+\sqrt{5})}=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}=\sqrt{2}+\sqrt{5}+1\)

g)

\(13+\sqrt{48}=13+2\sqrt{12}=12+1+2\sqrt{12.1}=(\sqrt{12}+1)^2\)

\(\Rightarrow \sqrt{13+\sqrt{48}}=\sqrt{12}+1\)

\(\Rightarrow \sqrt{3+\sqrt{13+\sqrt{48}}}=\sqrt{4+\sqrt{12}}=\sqrt{3+1+2\sqrt{3.1}}=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)

\(\Rightarrow 2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}=2\sqrt{2-\sqrt{3}}=\sqrt{2}.\sqrt{4-2\sqrt{3}}=\sqrt{2}.\sqrt{(\sqrt{3}-1)^2}\)

\(=\sqrt{2}(\sqrt{3}-1)=\sqrt{6}-\sqrt{2}\)

\(\Rightarrow G=1\)