Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x-1}{x-2}+\frac{x+3}{x^2-4}\right):\left(\frac{x+2}{x-2}+\frac{1}{2-x}\right)\)
\(A=\frac{\left(x-1\right)\left(x+2\right)+x+3}{\left(x+2\right)\left(x-2\right)}:\left(\frac{x+2}{x-2}-\frac{1}{x-2}\right)\)
\(A=\frac{x^2+2x-x-2+x+3}{\left(x+2\right)\left(x-2\right)}:\frac{x+2-1}{x-2}\)
\(A=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}.\frac{x-2}{x+1}\)
\(A=\frac{\left(x+1\right)^2}{x+2}.\frac{1}{x+1}\)
\(A=\frac{x+1}{x+2}\)
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(ĐKXĐ:x\ne\pm2\)
\(A=\left(\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(=\frac{-2\left(x-2\right)}{x+2}=\frac{4-2x}{x+2}\)
\(ĐKXĐ:x\ne\pm2;x\ne0\)
\(A=\left(\frac{2}{2+x}-\frac{4}{x^2+4x +4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left(\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(A=\frac{4-2x}{x+2}\)
\(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right)\cdot\dfrac{2-x}{x}\)
\(=\dfrac{x+2+2x+x-2}{-\left(2-x\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{-\left(x+2\right)\cdot x}=\dfrac{-4}{x+2}\)
\(A=\frac{x-1}{x+2}-\frac{x+2}{x-2}-\frac{x^2+12}{4-x^2}\) ĐKXĐ: \(x\ne\pm2\)
\(=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-2x-x+2-x^2-4x-4+x^2+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-7x+10}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x-5x+10}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x\left(x-2\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-5\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-5}{x+2}\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)-\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right).\left(x^4+\frac{\left(1+x^2\right)\left(1-x^2\right)}{1+x^2}\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^2-2}{x^2+1}\).
a ) \(A=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)
\(=\frac{x+2-\left(x-2\right)+x^2+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+8}{x^2-4}\)
b ) \(A=\frac{x^2+8}{x^2-4}=\frac{\left(x^2-4\right)+12}{x^2-4}=1+\frac{12}{x^2-4}\)
Để \(A\in Z\Leftrightarrow12⋮x^2-4\)
\(x^2-4\inƯ\left(12\right)=\left\{-12;-6;-4;-2;-1;1;2;4;6;12\right\}\)
Xét từng thường hợp của x ta tìm đc : \(x=\left\{-4;0;4\right\}\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)
= \(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)
= \(\frac{4}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)
=\(\frac{4}{x^2-2^2}+\frac{x^2+2^2}{x^2-2^2}\)
= \(\frac{4+x^2+2^2}{x^2-2^2}\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x+1-x}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )
a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)
Vậy \(Q=\frac{x^2}{x-2}\)
b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)
\(\Rightarrow Q\ge1+4=5\)
Vậy : GTNN của \(Q=5\)
P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33
Nếu chưa học Cô si thì chứng minh rồi dùng thôi :
Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :
\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Thật vậy : \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0
Dấu "=" xảy ra \(\Leftrightarrow a=b\)