Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)
1)\(\frac{-8}{5}+\frac{207207}{201201}\)
=\(\frac{-8}{5}+\frac{207}{201}\)
=\(\frac{-8}{5}+\frac{69}{67}\)
=\(\frac{-191}{335}\)
Ta có \(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+...\frac{1}{2002}=VP\)
Vậy...
Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath
\(\frac{y-1}{2004}+\frac{y-2}{2003}-\frac{y-3}{2002}=\frac{y-4}{2001}\)
\(\frac{y-1}{2004}-1+\frac{y-2}{2003}-1-\frac{y+3}{2002}+1=\frac{y-4}{2001}-1\)
\(\frac{y-2005}{2004}+\frac{y-2005}{2003}-\frac{y-2005}{2002}=\frac{y-2005}{2001}\)
\(\frac{y-2005}{2001}+\frac{y-2005}{2002}-\frac{y-2005}{2003}-\frac{y-2005}{2004}=0\)
\(\left(y-2005\right).\left(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
Dễ thấy: \(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}>0\)
=> y - 2005 = 0
=> y = 2005
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)
\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)