Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2 + 1/2.3 + 1/3.4 + .......................+ 1/99.100
= 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 +..................+ 1/99 - 1/100
= 1 - 1/100
= 99/100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Ma 99/100 < 1.
=> 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 < 1 (dccm)
Câu 1:
Đặt \(A=1.2+2.3+3.4+99.100\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=99.100.101:3\)
\(\Rightarrow A=33.100.101\)
\(\Rightarrow A=333300\)
Vậy A = 333300
Câu 2:
\(\left(2x-1\right)^4=81\)
\(\Rightarrow2x-1=\pm3\)
+) \(2x-1=3\Rightarrow x=2\)
+) \(2x-1=-3\Rightarrow x=-1\)
Vậy \(x\in\left\{2;-1\right\}\)
Câu 3:
C1: Giải:
Ta có: \(\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+c}{a-c}=\frac{b+d}{b-d}\left(đpcm\right)\)
C2: Đặt = k
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}=\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}=\frac{1}{5}\)
\(2^2+4^2+...+\left(2n\right)^2=2^2\left(1^2+2^2+...+n^2\right)\)
\(=\frac{2^2.n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
\(\Rightarrow\) Sai, nhưng số 1 và số 4 khi viết trên bảng rất giống nhau, bạn có chắc mình ko nhìn nhầm và chép nhầm đề ko?
\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
Do \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>0\) nên \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>1\) (đúng)
Lại nghi ngờ bạn chép nhầm đề, ko ai cho đề bài kiểu này cả, hoặc là vế phải là số 2, hoặc vế trái bạn thừa số 1 đầu tiên
Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}\)
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
\(2B=1-\frac{1}{729}\)
\(B=\frac{1-\frac{1}{729}}{2}\)
\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2C-C=\left(1+\frac{1}{2}+...+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)\)
\(C=1-\frac{1}{64}\)
Mình giúp bạn nè
Ta có:
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A-A=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)
\(\Rightarrow2A=3-\frac{1}{2187}=\frac{6561}{2187}-\frac{1}{2187}=\frac{6560}{2187}\)
\(\Rightarrow A=\frac{6560}{2187}:2=\frac{3280}{2187}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)