Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :
\(\Rightarrow\) \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
Bai 2 :
Ta co :
B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 + 2^26 + 2^27 + 2^28 +2^29 +2^30 ]
= 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]
= 2 . 63 +.... + 2^25 . 63
= 63 [2 + ..... + 2^25 ] chia het cho 21
Vay B chia het cho 21
Bai 1 :
Ta co :
A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4 + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50
=>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50
=> 1 + 1/1 - 1/50
=> 1 + 49/50
=> 99/50 < 2
Vay 1 < 2
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)