Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
Xét A = ........ĐK : x\(\ne\)-1 (*)
B=....... ĐK : x\(\ne\)-1 ; x\(\ne\) 3 (**)
a) Ta có : x2-4x+3
\(\Leftrightarrow\)x2 -3x-x+3
\(\Leftrightarrow\)(x -1) (x-3)
.......................
\(\Leftrightarrow\)x=1(thỏa mãn đk (*)
.,,,,,,,,,,,x=3 (thỏa mãn ĐK(*)
Thay x=..... vào A, ta được:................................
...............................................................................
Vậy tai thì A=..... hoặc A =..................
b) Xét B=................... ĐK.............
Ta có x2 -2x-3
= x2--3x+x -3
= (x+1) (x-3)
\(\Rightarrow B=\frac{x+3}{x+1}+\frac{x-7}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x-3}\)
= \(\frac{\left(x+3\right)\left(x-3\right)+x-7+x+1}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2-9+2x-6}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2+2x-15}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1\right)^2-16}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1+4\right)\left(x+1-4\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x+5}{x+1}\)
Vậy B=.......với x\(\ne\)..............
c) +) Tìm x để B= 2
Để B=2 thì \(\frac{x+5}{x+1}\)=2
\(\Leftrightarrow\frac{x+5-2\left(x+1\right)}{x+1}=0\)
\(\Leftrightarrow x+5-2x-2=0\)
........................................................
Vậy để B=2 thì x=...........
TƯƠNG TỰ B=x-1
d) XÉT B=...........ĐK.....................
ĐỂ B>2 THÌ ........................
GIẢI RA
g) Xét........................
Ta có \(B=\frac{x+5}{x+1}=1+\frac{4}{x+1}\)
Vì x\(\in\)Z nên (x+1) \(\in\)Z
Do đó A\(\in\)Z \(\Leftrightarrow\)\(1+\frac{4}{X+1}\)\(\inℤ\)
\(\Leftrightarrow\frac{4}{X+1}\inℤ\)
\(\Leftrightarrow4⋮\left(X+1\right)\)
\(\Leftrightarrow\left(X+1\right)\inƯ\left(4\right)\)
\(\Leftrightarrow\left(X+1\right)\in\hept{\begin{cases}\\\end{cases}\pm1;\pm2;\pm4}\)
Nếu x+1=1\(\Leftrightarrow\)x=0(thỏa mãn ĐK(**); X\(\inℤ\)
.............................................................................................
...............................................................................
Vậy để B nguyên thì x\(\in\hept{\begin{cases}\\\end{cases}}\).......................................................
e) XIN LỖI MÌNH CHỈ BIẾT TÌM GTNN CỦA B VỚI MỌI GIA TRỊ CỦA X
a) Ta có: A = \(\left(\frac{x}{x-1}+\frac{x}{x^2-1}\right):\left(\frac{2}{x^2}-\frac{2-x^2}{x^3+x^2}\right)\)
A = \(\left(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2\left(x+1\right)}{x^2\left(x+1\right)}-\frac{2-x^2}{x^2\left(x+1\right)}\right)\)
A = \(\left(\frac{x^2+x+x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x+2-2+x^2}{x^2\left(x+1\right)}\right)\)
A = \(\left(\frac{x^2+2x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x^2+2x}{x^2\left(x+1\right)}\right)\)
A = \(\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x^2\left(x+1\right)}{x\left(x+2\right)}\)
A = \(\frac{x^2}{x+1}\)
b) ĐKXĐ: x \(\ne\)\(\pm\)1; x \(\ne\)0; x \(\ne\)-2
Ta có: A = 4
<=> \(\frac{x^2}{x+1}=4\)
<=> x2 = 4(x + 1)
<=> x2 - 4x - 4 = 0
<=>(x2 - 4x + 4) - 8 = 0
<=> (x - 2)2 = 8
<=> \(\orbr{\begin{cases}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\sqrt{2}+2\\x=2-2\sqrt{2}\end{cases}}\)(tm)
Vậy ...
c) Ta có: A < 0
<=> \(\frac{x^2}{x+1}< 0\)
Do x2 \(\ge\)0 => x + 1 < 0
=> x < -1
Vậy để A < 0 thì x < -1 và x khác -2
a) \(ĐKXĐ:x\ne\pm3\)
b) \(A=\left(\frac{x}{x+3}+\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{x^2-9}\right):\frac{3}{x+3}\)
\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\left(x+3\right)\left(x^2-9\right)}\right):\frac{3}{x+3}\)
\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{x^2+3x+9}{\left(x+3\right)^2}\right):\frac{3}{x+3}\)
\(\Leftrightarrow A=\frac{x^2+3x-x^2-3x-9}{\left(x+3\right)^2}:\frac{3}{x+3}\)
\(\Leftrightarrow A=\frac{-9\left(x+3\right)}{3\left(x+3\right)^2}\)
\(\Leftrightarrow A=\frac{-3}{x+3}\)
c) Tại \(x=-\frac{1}{2}\)
\(\Leftrightarrow A=\frac{-3}{-\frac{1}{2}+3}\)
\(\Leftrightarrow A=\frac{-6}{5}\)
d) Để \(A>0\)
\(\Leftrightarrow\frac{-3}{x+3}>0\)
\(\Leftrightarrow x+3< 0\)(Vì -3 < 0)
\(\Leftrightarrow x< -3\)
e) +) Với \(A>\frac{-1}{2}\)
\(\Leftrightarrow\frac{-3}{x+3}>-\frac{1}{2}\)
\(\Leftrightarrow-6>-x-3\)
\(\Leftrightarrow x>3\)(tm)
+) Với \(A< -\frac{1}{2}\)
\(\Leftrightarrow\frac{-3}{x+3}< -\frac{1}{2}\)
\(\Leftrightarrow-6< -x-3\)
\(\Leftrightarrow x< 3\)(chú ý : \(x\ne-3\))
+) Với \(A=-\frac{1}{2}\)
\(\Leftrightarrow-\frac{3}{x+3}=-\frac{1}{2}\)
\(\Leftrightarrow x+3=6\)
\(\Leftrightarrow x=3\)(ktm)
Vậy \(\orbr{\begin{cases}A>-\frac{1}{2}\\A< -\frac{1}{2}\end{cases}}\)
a)
\(A=\left(\frac{1}{x}+\frac{x}{x+1}\right):\left(\frac{x+3}{x^2+x}-\frac{1}{x+1}\right)=\left(\frac{x+1}{x\left(x+1\right)}+\frac{x^2}{x\left(x+1\right)}\right):\left(\frac{x+3}{x^2+x}-\frac{x}{x\left(x+1\right)}\right)\)
\(=\frac{x+1+x^2}{x^2+x}:\frac{x+3-x}{x^2+x}=\frac{x^2+x+1}{x^2+x}.\frac{x^2+x}{3}=\frac{x^2+x+1}{3}\)
b) 2(x-1)=x2-1 <=> 2x-2=x2-1 <=> 0=x2-1+2-2x <=> x2-2x+1=0 <=> (x-1)2=0 <=>x-1=0<=>x=1 thay vào
\(A=\frac{x^2+x+1}{3}=\frac{1^2+1+1}{3}=\frac{3}{3}=1\)
c) \(A=\frac{x^2+x+1}{3}=\frac{1}{3}\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
d)\(-A=-\frac{x^2+x+1}{3}=-\frac{x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}}{3}=-\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{3}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{3}\ge\frac{1}{4}\Rightarrow-A\le-\frac{1}{4}< 0\)
Ta có đpcm
phần d chỉ CM -A<0 thôi mà
bạn giải thích hộ mình với , theo mình nghĩ thì hình như bạn đang làm phương pháp của tìm GTNN GTLN