\(\dfrac{x^5-2x^4+2x^3-4x^2-3x+6}{x^2+2x-8}\)

a) R/g A

b) x = ? để A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

a)Tử: \(x^5-2x^4+2x^3-4x^2-3x+6\)

\(=x^5+2x^3-3x-2x^4-4x^2+6\)

\(=x\left(x^4+2x^2-3\right)-2\left(x^4+2x^2-3\right)\)

\(=\left(x-2\right)\left(x^4+2x^2-3\right)\)

\(=\left(x-2\right)\left[x^4-x^2+3x^2-3\right]\)

\(=\left(x-2\right)\left[x^2\left(x^2-1\right)+3\left(x^2-1\right)\right]\)

\(=\left(x-2\right)\left(x^2-1\right)\left(x^2+3\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

Mẫu: \(x^2+2x-8=x^2-2x+4x-8\)

\(=x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x+4\right)\)

Suy ra \(A=\dfrac{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{\left(x-2\right)\left(x+4\right)}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{x+4}\)

b)\(A=0\Rightarrow\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{x+4}=0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2+3\right)=0\)

Dễ thấy: \(x^2+3\ge3>0\forall x\) (vô nghiệm)

Nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

A có nghĩa khi \(x+4\ne0\Rightarrow x\ne-4\)

A vô nghĩa khi \(x+4=0\Rightarrow x=-4\)

24 tháng 7 2017

Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.

bài 2:

a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)

Kl: x<0

b) \(a+x< a\Leftrightarrow x< 0\)

Kl: x<0

c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)

Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)

Kl: x>1

24 tháng 7 2017

Câu 4:

a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)

Kl: x>3

b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

Kl: x>2 hoặc x<1

c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)

Kl: -4<x<-1

d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)

Kl: -3<x<9

e) Đk: x khác 0

\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)

KL: x >5

f) ĐK: x khác 1

\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)

Kl: 1< x< 5/2

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

6 tháng 7 2017

\(\text{a) }3-2\left|4x-5\right|=\dfrac{2}{6}\\ \Leftrightarrow2\left|4x-5\right|=\dfrac{8}{3}\\ \Leftrightarrow\left|4x-5\right|=\dfrac{4}{3}\\ \Leftrightarrow4x-5=-\dfrac{4}{3}\text{ hoặc :}\\ 4x-5=-\dfrac{4}{3}\\ \Leftrightarrow\left[{}\begin{matrix}4x-5=-\dfrac{4}{3}\\4x-5=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{3}\\4x=\dfrac{19}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{19}{12}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{11}{12}\text{ hoặc }x=\dfrac{19}{12}\)

6 tháng 7 2017

sao có mỗi ý a vậy bạn ?

25 tháng 7 2017

help me

25 tháng 7 2017

\(\left(x-1\right)\left(x+5\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\end{matrix}\right.\)

\(\left(x-1\right)\left(x+5\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-5< x< 1\)

câu dễ tự làm

\(\Rightarrow x>-5;x< -5\)

b: 2x-3<0

=>2x<3

hay x<3/2

c: \(\left(2x-4\right)\left(9-3x\right)>0\)

=>(x-2)(x-3)<0

=>2<x<3

d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)

=>2/3x>3/4

hay x>9/8

25 tháng 7 2018

a, \(\left(x-3\right)\left(2x+5\right)>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\2x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\2x+5< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x>-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x< -\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -\dfrac{5}{2}\end{matrix}\right.\)

b,\(\left(1-4x\right)\left(x-2\right)< 0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-4x>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-4x< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x>2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x>2\end{matrix}\right.\)

25 tháng 7 2018

c, \(\dfrac{-3}{x+2}< 0\Leftrightarrow x+2>0\Leftrightarrow x>-2\)

5 tháng 7 2017

ai giúp mình với nhanh lên các bạn

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

6 tháng 9 2017

a) \(\left(x-\dfrac{3}{5}\right)\left(x+\dfrac{3}{8}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{5}>0\\x+\dfrac{3}{8}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{5}< 0\\x+\dfrac{3}{8}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{5}\\x>-\dfrac{3}{8}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{5}\\x< -\dfrac{3}{8}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3}{5}\\x< -\dfrac{3}{8}\end{matrix}\right.\)

Vậy ...

6 tháng 9 2017

b) \(\left(2x+\dfrac{3}{2}\right):\left(2x-\dfrac{2}{3}\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+\dfrac{3}{2}>0\\2x-\dfrac{2}{3}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+\dfrac{3}{2}< 0\\2x-\dfrac{2}{3}>0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x>-\dfrac{3}{2}\\2x< \dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}2x< -\dfrac{3}{2}\\2x>\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< 2x< \dfrac{2}{3}\\\dfrac{2}{3}< 2x< -\dfrac{3}{2}\text{(vô lí)}\end{matrix}\right.\)

\(\Rightarrow-\dfrac{3}{4}< x< \dfrac{1}{3}\)

Vậy ...