Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5 - \(x\))(9\(x^2\) - 4) =0
\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\); \(\dfrac{2}{3}\); \(5\)}
72\(x\) + 72\(x\) + 3 = 344
72\(x\) \(\times\) ( 1 + 73) = 344
72\(x\) \(\times\) (1 + 343) = 344
72\(x\) \(\times\) 344 = 344
72\(x\) = 344 : 344
72\(x\) = 1
72\(x\) = 70
\(2x\) = 0
\(x\) = 0
Kết luận: \(x\) = 0
\(\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(0,5-1\dfrac{3}{5}\right)\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(\dfrac{1}{2}-\dfrac{8}{5}\right)\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\dfrac{11}{10}\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{33}{80}\)
\(\Rightarrow x:2,2=\dfrac{33}{80}:\dfrac{1}{6}\)
\(\Rightarrow x:2,2=\dfrac{99}{40}\)
\(\Rightarrow x=\dfrac{99}{40}\times2,2\)
\(\Rightarrow x=\dfrac{1089}{200}\)
=>(x:2,2)*1/6=-3/8(1/2-8/5)=33/80
=>x:2,2=99/40
=>x=1089/200
a) Vì |x - 3,5| ≥ 0∀x
|4,5 - y| ≥ 0∀y
=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y
Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5
Vậy GTNN = 0 khi x = 3,5;y = 4,5
b) |x - 2| ≥ 0 ∀x
|3 - y| ≥ 0 ∀y
=> |x - 2| + |3 - y| ≥ 0 ∀x,y
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy GTNN = 0 <=> x = 2,y = 3
c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)
Vì \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)
=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)
Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5
Bài cuối tự làm :)))
a/
Theo đề,ta có:
+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)
Từ (1) và (2), ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
Do đó:
+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)
+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)
+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)
Vậy: + \(x=-\dfrac{224}{19}\)
+ \(y=-\dfrac{336}{19}\)
+ \(z=-\dfrac{420}{19}\)
a,x2=y3,y4=z5và x-y-z=28
Có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)
=> x=\(\dfrac{-224}{19}\)
y=\(\dfrac{-336}{19}\)
z=\(\dfrac{-420}{19}\)
\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)
=\(\left(\dfrac{1}{9}\right)^{25}.\left(-9\right)^{25}-\dfrac{1}{6}\)
=\(\left[\dfrac{1}{9}.\left(-9\right)\right]^{25}-\dfrac{1}{6}\)
= \(\left(-1\right)^{25}-\dfrac{1}{6}\)
= \(-1-\dfrac{1}{6}=\dfrac{-7}{6}\)
\(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)
\(=\left(\dfrac{1}{9}\right)^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)
\(=\left[\dfrac{1}{9}\cdot\left(-9\right)\right]^{25}-\dfrac{1}{6}\)
\(=\left(-1\right)^{25}-\dfrac{1}{6}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
A = \(|x-\dfrac{2}{3}|-\dfrac{1}{2}\)
A = \(\left[{}\begin{matrix}x-\dfrac{2}{3}-\dfrac{1}{2}\\-\left(x-\dfrac{2}{3}\right)-\dfrac{1}{2}\end{matrix}\right.\)
A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{2}{3}-\dfrac{1}{2}\end{matrix}\right.\)
A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{1}{6}\end{matrix}\right.\)
TH1: \(x-\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(x-\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)
TH2: \(-x+\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(-x+\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)
Vậy A đạt giá trị nhỏ nhất khi \(x=\dfrac{1}{6}\)
a,\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+0,2\right)\)
\(=-\dfrac{891}{25}:4\)
\(=-\dfrac{891}{100}\)
b,\(\dfrac{5^4.20^4}{25^5.4^5}\)
\(=\dfrac{5^4.20^4}{\left(5^2\right)^5.\left(2^2\right)^5}\)
\(=\dfrac{5^4.20^4}{5^{10}.2^{10}}\)
\(=\dfrac{20^4}{5^6.2^{10}}\)
\(a,\Rightarrow\dfrac{\left(-3\right)^x}{\left(-3\right)^4}=\left(-3\right)^3\\ \Rightarrow\left(-3\right)^{x-4}=\left(-3\right)^3\\ \Rightarrow x-4=3\Rightarrow x=7\\ b,Sửa:\left(x-\dfrac{1}{2}\right)^2=25\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=5\\x-\dfrac{1}{2}=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{5}\\x=-\dfrac{9}{5}\end{matrix}\right.\)