Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
bài 2:để Z là số nguyên thì 3n-5 \(⋮\)n+4
\(\Rightarrow[(3n-5)-3(n+4)]⋮(n+4)\)
\(\Rightarrow(3n-5-3n-12)⋮(n+4)\)
\(\Rightarrow-17⋮n+4\)
\(\Rightarrow n+4\inƯ(17)\)={1;-1;17;-17}
\(\Rightarrow\)n\(\in\){-3;-5;13;-21}
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư ( 5 )
Ư ( 5 ) = { + 1 ; + 5 }
n - 2 | 1 | - 1 | 5 | - 5 |
n | 3 | 1 | 7 | - 3 |
\(\frac{n+3}{n-2}\) | 6/1 | 4/-1 | 10/5 | 0 |
Vậy để n + 3 / n - 2 là số âm thì n = 1
Câu b và c làm tương tự
\(A=\dfrac{3n+4}{n-1}\inℤ\)
\(\Rightarrow3n+4⋮n-1\)
\(\Rightarrow3n+4-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+4-3n+3⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow n\in\left\{0;2;-6;8\right\}\)
Cô tick xanh cho em nhưng Nguyễn Đức TRí lần sau em làm nhớ thêm đkxđ vào nhá