\(\dfrac{3n+4}{n-1}\) ,Tìm n dể kết qua của phép tính là A  thuộc Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2023

\(A=\dfrac{3n+4}{n-1}\inℤ\)

\(\Rightarrow3n+4⋮n-1\)

\(\Rightarrow3n+4-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+4-3n+3⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n\in\left\{0;2;-6;8\right\}\)

16 tháng 8 2023

Cô tick xanh cho em nhưng Nguyễn Đức TRí lần sau em làm nhớ thêm đkxđ vào nhá

24 tháng 12 2016

A=n+3 chia hết cho n+1

mà n+3 =(n+1)+2

vì n+1 chia hết cho n+1

nên A chia hết cho n+1 

khi2chia hết cho n+1

suy ra n+1 thuộc ước của 2

suy ra n+1 thuộc {1;2}

mà n thuộc Z  Suy ra n thuộc { 0;1}

Câu 2 dựa theo cách trên mà tự làm 

24 tháng 12 2016

\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)

Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}

n + 1-11-22
n-20-31

\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)

Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}

n - 41-117-17
n5321-13
19 tháng 8 2017

bài 2:để Z là số nguyên thì 3n-5 \(⋮\)n+4

\(\Rightarrow[(3n-5)-3(n+4)]⋮(n+4)\)

\(\Rightarrow(3n-5-3n-12)⋮(n+4)\)

\(\Rightarrow-17⋮n+4\)

\(\Rightarrow n+4\inƯ(17)\)={1;-1;17;-17}

\(\Rightarrow\)n\(\in\){-3;-5;13;-21}

19 tháng 8 2017

tick cho mk nha bnhaha

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

23 tháng 3 2018

a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)

 <=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)

<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)

c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)

<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

20 tháng 12 2021

cục cức chấm mắm

21 tháng 2 2016

a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2

                                              <=> n - 2 + 5 chia hết cho n - 2

                                               <=> 5 chia hết cho n - 2

                                               <=> n - 2 thuộc Ư ( 5 ) 

Ư ( 5 ) = { + 1 ; + 5 }

n - 21- 15- 5
n317- 3
\(\frac{n+3}{n-2}\)6/14/-110/50

Vậy để n + 3 / n - 2 là số âm thì n = 1

Câu b và c làm tương tự