Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
A=1/7-x-x-3/5+4/5=-2x+12/35
b: B=|x-1/7|+|x+3/5|-1/3
x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
B=1/7-x+3/5+x-1/3=43/105
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
a: 2x(x-1/7)=0
=>x(x-1/7)=0
=>x=0 hoặc x=1/7
b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)
c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)
\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)
\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1\right\}\)
\(S=\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\\ 25S=25\left(\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\right)\\ 25S=1+\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2016}}\\ 25S-S=\left(1+\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2016}}\right)-\left(\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\right)\\ 24S=1-\dfrac{1}{5^{2018}}< 1\\ \Rightarrow S< \dfrac{1}{24}\)
a: Gọi số nguyên cần tìm là x
Theo đề, ta có: \(\dfrac{1}{3}+\left(\dfrac{2}{4}-1\dfrac{2}{5}\right)< x< 2\dfrac{1}{7}+\left(\dfrac{-2}{5}-\dfrac{1}{4}\right)\)
\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{7}{5}< x< \dfrac{15}{7}-\dfrac{2}{5}-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20}{60}+\dfrac{30}{60}-\dfrac{84}{60}< x< \dfrac{15\cdot20-2\cdot28-35}{140}\)
\(\Leftrightarrow-\dfrac{34}{60}< x< \dfrac{209}{140}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
b: Gọi số nguyên cần tìm là x
Theo đề, ta có: \(\dfrac{7}{3}+\dfrac{3}{4}-\dfrac{1}{5}>x>\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{7\cdot20+3\cdot15-12}{60}>x>\dfrac{56-21+2\cdot12}{84}\)
\(\Leftrightarrow\dfrac{173}{60}>x>\dfrac{59}{84}\)
mà x là số nguên
nên \(x\in\left\{2;1\right\}\)
\(\dfrac{-5}{12}< \dfrac{a}{5}< \dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{-25}{60}< \dfrac{12a}{60}< \dfrac{15}{60}\)
\(\Rightarrow-25< 12a< 15\) mà \(a\in Z\)
\(\Rightarrow a\in\left\{-2;0;1\right\}\)
tìm a thuộc Z , biết :
\(\dfrac{-5}{12}< \dfrac{a}{5}< \dfrac{1}{4}\)
Ta lấy mẫu chung là 60
\(\Rightarrow\dfrac{-5.5}{12.5}< \dfrac{12.a}{5.12}< \dfrac{1.15}{4.15}\)
\(\Rightarrow\dfrac{-25}{60}< \dfrac{12.a}{60}< \dfrac{15}{60}\)
\(\Rightarrow\) -25<12a<15
\(\Rightarrow a\in\left\{-2,0.1\right\}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}\right)+\left(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}\right)\)
Ta có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) (1)
Lại có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\Rightarrow A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\) (2)
Từ (1) và (2) suy ra \(\dfrac{7}{12}< A< \dfrac{5}{6}\)