Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)
E = \(\dfrac{4116-14}{10290-35}\)
E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)
E = \(\dfrac{14}{35}\)
K = \(\dfrac{2929-101}{2.1919+404}\)
K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)
K = \(\dfrac{29-1}{34+8}\)
K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)
Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)
\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)
\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)
Vậy E < K
Các câu còn lại tương tự
Có \(A=\frac{10^{2017}+1-3}{10^{2017}+1}=1-\frac{3}{10^{2017}+1}\)
\(B=\frac{10^{2017}+3-3}{10^{2017}+3}=1-\frac{3}{10^{2017}+3}\)
Có 102017+1<102017+3
=> \(\frac{3}{10^{2017}+1}>\frac{3}{10^{2017}+3}\)
=>A<B
Ta có:
\(\frac{2017^{10}+1}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
Lại có:
\(\frac{2017^{10}-1}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
Vì \(1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-3}\)
Nên \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Vậy \(\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
Ta có
\(\frac{2017^{10}+1}{2017^{10}-1}=\frac{2017^{10}-1+2}{2017^{10}-1}=1+\frac{2}{2017^{10}-1}\)
\(\frac{2017^{10}-1}{2017^{10}-3}=\frac{2017^{10}-3+2}{2017^{10}-3}=1+\frac{2}{2017^{10}-3}\)
\(\Rightarrow1+\frac{2}{2017^{10}-1}< 1+\frac{2}{2017^{10}-1}\)
\(\Rightarrow\frac{2017^{10}+1}{2017^{10}-1}< \frac{2017^{10}-1}{2017^{10}-3}\)
a) \(S=\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)
\(\Rightarrow2S=\dfrac{2\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)
\(2S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}\)
\(\Rightarrow2S-S=S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}-\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)
\(S=\dfrac{\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)
\(S=\dfrac{2^{2018}-2}{1-2^{2017}}=\dfrac{-2\left(1-2^{2017}\right)}{1-2^{2017}}=-2\) vậy \(S=-2\)
Các câu dễ bạn tự làm nha:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2017^{2017}+1}{2017^{2018}+1}< 1\)
\(A< \dfrac{2017^{2017}+1+2016}{2017^{2018}+1+2016}\Rightarrow A< \dfrac{2017^{2017}+2017}{2017^{2018}+2017}\Rightarrow A< \dfrac{2017\left(2017^{2016}+1\right)}{2017\left(2017^{2017}+1\right)}\Rightarrow A< \dfrac{2017^{2016}+1}{2017^{2017}+1}=B\)\(A< B\)
a, Ta có: \(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)
\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)
\(\Rightarrow A=\dfrac{2016+2017}{2017+2018}< B=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)
Vậy A < B
b, Ta có: \(\dfrac{2017}{2016+2017}< \dfrac{2017}{2016}\)
\(\dfrac{2018}{2016+2017}< \dfrac{2018}{2017}\)
\(\Rightarrow M=\dfrac{2017+2018}{2016+2017}< N=\dfrac{2017}{2016}+\dfrac{2018}{2017}\)
Vậy M < N
Vì \(A=\dfrac{10^{2017}-2}{10^{2017}+1}< 1\)
\(\Rightarrow B=\dfrac{10^{2017}-2}{10^{2017}+1}< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=A\)
Vậy A > B
Vì \(A< 1\)
\(\Rightarrow A< \dfrac{10^{2017}-2+2}{10^{2017}+1+2}=\dfrac{10^{2017}}{10^{2017}+3}=B\)
Vậy A < B