Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(21n+4,14n+3)=d
=>21n+4\(⋮\)d =>42n+8\(⋮\)d (1)
=>14n+3\(⋮\)d =>42n+9\(⋮\)d (2)
Từ (1) và (2) => (42n+9)-(42n+8)\(⋮\)d =>1\(⋮\)d =>d=1 (vì d=ƯCLN)
=> \(\frac{21n+4}{14n+3}\)là phân số tối giản, với mọi n\(\in\) N (ĐCCM)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n\(\in\)N
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=3\\ \Leftrightarrow\frac{x^2z}{xyz}+\frac{y^2x}{xyz}+\frac{z^2y}{xyz}=3\\ \Leftrightarrow x^2z+y^2x+z^2y=3xyz\\ \Leftrightarrow x^2z+y^2x+z^2y-3xyz=0\\ \Leftrightarrow xz\left(x-y\right)+yx\left(y-z\right)+yz\left(z-x\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}xz\left(x-y\right)=0\\yx\left(y-z\right)=0\\yz\left(z-x\right)=0\end{matrix}\right.\Leftrightarrow\left(x,y,z>0\Rightarrow xz,yx,yz\ne0\right)\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Leftrightarrow x=y=z\Rightarrow1+1+1=3\left(dpcm\right)\)
Mình bổ sung tí TH2:\(\frac{\sqrt{y}}{x}+\frac{\sqrt{z}}{y}+\frac{\sqrt{x}}{z}=\frac{\sqrt{x}}{x}+\frac{\sqrt{x}}{x}+\frac{\sqrt{x}}{x}=\frac{3}{\sqrt{x}}\le3\)
Lời giải:
Sử dụng phương pháp hệ số bất định, ta sẽ chứng minh:
$\frac{1}{x^2+x}\geq \frac{5}{4}-\frac{3}{4}x(*)$
Thật vậy:
$(*)\Leftrightarrow \frac{1}{x^2+x}\geq \frac{5-3x}{4}$
$\Leftrightarrow 4\geq (5-3x)(x^2+x)$
$\Leftrightarrow 4-(5-3x)(x^2+x)\geq 0$
$\Leftrightarrow (x-1)^2(3x+4)\geq 0$ (luôn đúng với mọi $x>0$)
Hoàn toàn tương tự:
$\frac{1}{y^2+y}\geq \frac{5}{4}-\frac{3y}{4}$
$\frac{1}{z^2+z}\geq \frac{5}{4}-\frac{3z}{4}$
Cộng theo vế các BĐT trên ta có:
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{15}{4}-\frac{3}{4}(x+y+z)=\frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
a)Do A chia hết cho 4 nên\(\dfrac{x^2}{x-1}\) \(\in\) Z
suy ra 1 chia hết cho x-1 suy x\(\in\) \(\left\{0;2\right\}\)
b)Do P thuộc Z nên 3 chia hết cho 2x+1
suy ra x\(\left\{-2;-1;0;1\right\}\)
a) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Ta được điều phải chứng minh.
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2}\Leftrightarrow4\left(a+b\right)=2ab\)
\(\left(x^2+ax+b\right)\left(x^2+bx+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+ax+b=0\left(1\right)\\x^2+bx+a=0\left(2\right)\end{matrix}\right.\)
Ta có: \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4a\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0;\forall a;b\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) ko âm
\(\Rightarrow\) Ít nhất 1 trong 2 pt (1) hoặc (2) có nghiệm \(\Rightarrow\) pt đã cho luôn có nghiệm