Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=2^n.3^2-2^n.2^2+3^n-2^n\)
\(=2^n.9+2^n.4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)
1) \(x+2y=3xy+3\)
\(\Rightarrow3xy+3-x-2y=0\)
\(\Rightarrow3xy-x+3-2y=0\)
\(\Rightarrow18xy-6x+18-12y=0\)
\(\Rightarrow6x\left(3y-1\right)+4-12y=-14\)
\(\Rightarrow6x\left(3y-1\right)-4\left(3y-1\right)=-14\)
\(\Rightarrow\left(6x-4\right)\left(3x-1\right)=-14\)
Bạn tự phân tích ra rồi tìm x, y nhé!
a, Ta có: 3xy - 5 = x2 + 2y
=> 3xy - x2 - 2y = 5
=> y.( 3x - 2 ) = 5 + x.x
=> y = \(\frac{5+x^2}{3x-2}\)
=> \(x^2+5⋮3x-2\)( vì y là số nguyên )
=> \(3x^2+15⋮3x-2\)
\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)
\(\Rightarrow2x+15⋮3x+2\)
\(\Rightarrow6x+45⋮3x+2\)
\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)
\(\Rightarrow41⋮3x+2\)
\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)
\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)
VÌ 3x chia hết cho 3
\(\Rightarrow3x\in\left\{-3;39\right\}\)
\(\Rightarrow x\in\left\{-1;13\right\}\)
+) với x = -1 => y = -6/5 ( loại )
+) với x = 13 => y = 174/37 ( loại )
Vậy không tìm được ( x ; y ) thỏa mãn bài
b,
Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11
a) \(S=3^{n+2}-2^{n+2}+3^n-2^n\)
\(S=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(S=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)
\(S=3^n.10-2^n.5\)
\(S=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10⋮10\left(đpcm\right)\)
b) Ta có: \(\left\{{}\begin{matrix}7\left(x-2004\right)^2\ge0\\7\left(x-2004\right)^2⋮7\end{matrix}\right.\)
\(\Rightarrow y^2\le23\) và \(23-y^2⋮7\)
\(\Rightarrow23-y^2\in B\left(7\right)=\left\{0;7;14;21;28;...\right\}\)
Vì \(y^2\in N\) và \(y^2\le23\)
\(\Rightarrow23-y^2=\left[{}\begin{matrix}7\\14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4\\y=3\end{matrix}\right.\)
Thay vào là tìm được x
a, S= \(3^{n+2}-2^{n+2}-3^n-2^n\)
= \(3^n.3^2-2^n.2^2+3^n-2^n\)
= \(3^n.3^2+3^n-2^n.2^2-2n\)
= \(3^n.9+3^n-\left(2^n.4+2^n\right)\)
= \(3^n\left(9+1\right)-\left[2^n\left(4+1\right)\right]\)
= \(3^n.10-2^n.5\)
= \(3^n.10-2.2^{n-1}.5\)
= \(3^n.10-2^{n-1}.10\)
= 10.( \(3^n-2^{n-1}\))
Vì 10 chia hết cho 10 nên 10.(\(3^n-2^{n-1}\)) chia hết cho 10
=> S chia hết cho 10