K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

b,

Ta có:

\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

17 tháng 11 2021

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)

\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)

Ta có

\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)

\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)

\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)

\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

28 tháng 6 2021

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

28 tháng 6 2021

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

29 tháng 6 2017

Bài 2:

Ta có: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Rightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+3ab.\left(-c\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

(Còn nhiều cách nữa ,mình làm 1 cách nhé)

29 tháng 6 2017

Baì 1 nữa đi cậu

21 tháng 7 2016

Xét : \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Suy ra : \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c=2016\)

Vậy ta có điều phải chứng minh.

11 tháng 7 2018

Ta có vế trái = (a2+b2+c2−ab−ac−bca2+b2+c2−ab−ac−bc)

(a+b+c)

= \(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-abc-b^2c+a^2c+b^2c+c^3-abc-ac^2-bc^2\) =\(a^3+b^3+c^3-3abc\)

=> (a2+b2+c2−ab−ac−bca2+b2+c2−ab−ac−bc)(a+b+c)=a3+b3+c3−3abc (đpcm )

Vậy (a2+b2+c2−ab−ac−bca2+b2+c2−ab−ac−bc)(a+b+c)=a3+b3+c3−3abc

11 tháng 7 2018

Bài này bạn biến đổi VP sẽ hay hơn .

\(VP=a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\) Vậy , đăng thức được chứng minh .

8 tháng 8 2017

Ta có :

 \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=a+b+c=2009\)(đpcm)