Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=25x^2-20x+7\)
\(A=\left(25x^2-20x+4\right)+3\)
\(A=\left(5x-2\right)^2+3>0\)
Học tốt
a) \(A=x-x^2-10=-\left(x^2-x+\frac{1}{4}\right)-\frac{39}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{39}{4}\le-\frac{39}{4}\)với mọi \(x\).
b) \(B=-x^2-2y^2+2xy-2x+10y-40\)
\(=-x^2-y^2-1+2xy-2x+2y-y^2+8y-16-24\)
\(=-\left(x-y+1\right)^2-\left(y-4\right)^2-24\le-24\)với mọi \(x,y\).
\(a,-x^2+6x-16\)
\(=-x^2+3x+3x-9-5\)
\(=-x\left(x-3\right)+3\left(x-3\right)-5\)
\(=\left(3-x\right)\left(x-3\right)-5\)
\(=-\left(x-3\right)^2-5\le-5\)=>Luôn âm
\(c,-1+x-x^2\)
\(=-x^2+x-1\)
\(=-\left(x^2-x+\frac{1}{2}+\frac{1}{2}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\le\frac{-1}{2}\)=>Luôn âm
1, \(A=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
\(\left(x^2-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
Từ 3 điều trên \(\Rightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\)Vậy biểu thức A luôn có giá trị dương với mọi giá trị của biến
2,
a, \(M=25x^2-20x+7\)
\(=25x^2-20x+4+3\)
\(=\left(5x-2\right)^2+3\)
Ta có: \(\left(5x-2\right)^2\ge0\forall x\Rightarrow\left(5x-2\right)^2+3\ge0\)
Vậy biểu thức M luôn có giá trị dương với mọi giá trị của biến
b, \(N=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1\)
Ta có: \(\left(3x-y\right)^2\ge0\forall x,y\)
\(y^2\ge0\Rightarrow y^2+1\ge0\forall y\)
Từ 2 điều trên \(\Rightarrow\left(3x-y\right)^2+y^2+1\ge0\)
Vậy biểu thức N luôn có giá trị dương với mọi giá trị của biến
3,
a, \(P=2x-x^2-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le0\)
Vậy biểu thức P luôn có giá trị âm với mọi giá trị của biến
b, \(Q=-x^2-y^2+8x+4y-21\)
\(=-\left(x^2-8x+16+y^2-4y+4+1\right)\)
\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\Rightarrow-\left(x-4\right)^2\le0\)
\(\left(y-2\right)^2\ge0\forall x\Rightarrow-\left(y-2\right)\le0\)
Từ 2 điều trên \(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0\)Vậy biểu thức Q luôn có giá trị âm với mọi giá trị của biến
a) Đặt \(A=x^2+4x+7\)
\(A=\left(x^2+4x+4\right)+3\)
\(A=\left(x+2\right)^2+3\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow A\ge3>0\)
b) Đặt \(B=4x^2-4x+5\)
\(B=\left(4x^2-4x+1\right)+4\)
\(B=\left(2x-1\right)^2+4\)
Mà \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\)
c) Đặt \(C=x^2+2y^2+2xy-2y+3\)
\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow C\ge2>0\)
Em kiểm tra lại đề bài nhé vì:
\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)
\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)
\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0
=> Q luôn có gia trị âm với mọi x, y khác 0.
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
a: \(M=25x^2-20x+1+6=\left(5x-1\right)^2+6>0\)
\(N=9x^2-6xy+y^2+y^2+1=\left(3x-y\right)^2+y^2+1>=1\)
b: \(P=-x^2+2x-2\)
=-(x^2-2x+2)
=-(x^2+2x+1+1)
=-(x+1)^2-1<0
Q=-(x^2-8x+y^2-4y+21)
=-(x^2-8x+16+y^2-4y+4+1)
=-(x-4)^2-(y-2)^2-1<=-1<0