K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

a)(5n+7)(4n+6)

nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)

Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2   (1)

nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2    (2)

Từ (1)  (2) =>(5n+7).(4n+6) luôn chia hết cho 2

=>đpcm

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

10 tháng 8 2015

 

a) (5n+7).(4n+6) = 2.(5n+7).(2n+3)

Vậy (5n+7).(4n+6) chia hết cho 2 với n thuộc N

 

b)(8n+1).(6n+5)

ta có

8n là số chẳn 

=>8n+1 là số lẽ

hay 8n+1 không chia hết cho 2

lại có:

6n là số chẵn

=>6n+5 là số lẽ

hay 6n+5 không chia hết cho 2

suy ra (8n+1).(6n+5) không chia hêt cho 2 với n thuộc N

10 tháng 8 2015

a)Ta có:(5n+7)(4n+6)=2.(5n+7)(2n+3) chia hết cho 2 với mọi n thuộc N(đpcm)

b)Do 8n là số chẵn với mọi n thuộc N=>8n+1 là số lẻ

Tương tự 6n+5 cũng là số lẻ

Mà tích 2 số lẻ là 1 số lẻ

Do tích 2 số lẻ không chia hết cho 2 nên

(8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N

8 tháng 8 2018

a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm

b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm

8 tháng 8 2018

a) Ta có: 4n+6 có chữ số tận cùng là số chẵn

=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn

Mà các số có chữ số chẵn tận cùng đều chia hết cho 2

Vậy (5n+7).(4n+6) chia hết cho 2

b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ

                 6n+5 có chữ số tận cùng cũng là một số lẻ

=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ

=> (8n+1).(6n+5) không chia hết cho 2

19 tháng 10 2014

a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2

Vậy (5n+7)(4n+6) chia hết cho 2

Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.

mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho 

vậy (5n+7)(4n+6) chia het cho (đpcm)

b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)

                6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)

từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le

vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n

                      câu a bạn nên làm theo cách 2

15 tháng 10 2016

đúng rồi