\(\left(ab+cd+eg\right)\)chia hết cho 11 thì ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2015

a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết cho 11 thì số đó chia hết cho 11.

The đề bài ab+cd+eg chia hết cho 11 

nên  10a+10c+10e+b+d+g chia hết cho 11

hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11

suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11

mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11

Vì vậy abcdeg chia hết cho 11

a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết
cho 11 thì số đó chia hết cho 11.
The đề bài ab+cd+eg chia hết cho 11 
nên  10a+10c+10e+b+d+g chia hết cho 11
hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11
suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11
mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11
Vì vậy abcdeg chia hết cho 11

20 tháng 12 2017

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

27 tháng 7 2017

a) Ta có:

abcdeg = ab . 10000+cd.100+eg

           = ab.9999+cd.99+ab+cd+eg

           = (9999ab+99cd)+(ab+cd+eg)

Vì 9999ab + 99cd chia hết cho 11 (vì 9999 và 99 chia hết cho 11) và ab+cd+eg chia hết cho 11(theo đề bài)

nen => abcdeg chia hết cho 11

       => đpcm

b) Ta có:

10^28+8=1000..0008(27 chữ số 0)

Xét đuôi 008 chia hết cho 8 nên=> 10^28+8 chia hết cho 8(1)

Xét 10^28+8 có tổng các chữ số chia hết cho 9 nên => 10^28+8 chia hết cho 9(2)

mà 8.9=72(3)

Từ (1),(2) và (3)=> 10^28+8 chia hết cho 72

=> đpcm

Ta có : abcdeg = ab.10000 + cd.100 + eg 

                         = ab.9999 + cd.99 + (ab + cd + eg)

                         = 99(ab.101 + cd) + (ab + cd + eg)

Vì 99(ab.101 + cd) chia hết cho 11 và  (ab + cd + eg) chia hết cho 11

Vậy abcdeg chia hết cho 11

3 tháng 4 2018

a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg 

                             = ab . 9999 + ab + cd . 99 + cd + eg

                             = ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg

                              = (ab . 909 + cd . 9) . 11 + (ab + cd + eg)

  Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

4 tháng 10 2015

Bài 78 :

Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1

Ta có : A có 10 số hạng

Vậy A = (...1) + (...1) + .... + (..1) = (...0)

A có chữ số tận cùng là 0 nên A chia hết cho 5

4 tháng 10 2015

78/ \(A=11^9+11^8+11^7+...+11+1\)

\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)

\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)

\(A=11^{10}\text{-}1\)

\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.

7 tháng 6 2016

a,abcdeg = ab.10000+ cd. 100 + eg

= 9999.ab + 99.cd + ab + cd+ eg

=[9999ab +99cd + [ ab + cd + eg]

vi 9999ab +99cd chia het cho 11  va ab + cd + eg chia het cho 11[ theo de bai]

=>dpcm

b] tu bn lam

16 tháng 3 2017

abcdeg =1000ab+100cd+eg =11 (101ab + 11cd )+(ab+cd+eg)

vi ab+cd+eg chia het cho 11 nen abcdeg chia het cho11

16 tháng 3 2017

a) abcdeg = 10000.ab+100.cd+eg  = 9999.ab+99.cd+(ab+cd+eg)

Ta có: 9999.ab và 99.cd luôn chia hết cho 11

Nên nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11

=> Đpcm