Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\\ =abc+ac^2+a^2b+a^2c+cb^2+ab^2+bc^2+abc-2abc\\ =ac^2+a^2b+a^2c+cb^2+ab^2+bc^2\)
\(=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)=ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)-3abc\\ \)\(=\left(a+b+c\right)\left(ab+ac+bc\right)-3abc\)
Vì a+b+c chia hết cho 6 => (a+b+c)(ab+ac+bc) chia hết cho 6
Vì a+b+c chia hết cho 6 nên nó tồn tại ít nhất 1 số chẵn => 3abc chia hết cho 6
=> (a+b)(b+c)(c+a)-2abc chia hết cho6
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
a 2001^2017 -1 chia hết cho 10
ta có 2001^ 2017 -1^2017 chia hết cho 10
ta thấy 2 số này có chung số mũ , ta lại có
2001-1=2000 ( 2000 chia hết cho 10)
ta chứng minh được 2001^2017 -1 chia hết cho 10
còn những câu khác bạn tự làm nha
34n sẽ có tận cùng bằng 1
(......1) - (.....6) = (......5) chia hết cho 5 (đpcm)
a/ Ta có \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\) Khi đồng thời chia hết cho 2 và 3
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 3 số tự nhiên liên tiếp nên có ít nhất 1 thừa số là chẵn \(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\forall n\)
+ Nếu \(n⋮3\Rightarrow n+3⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 1 \(\Rightarrow n+2⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\forall n\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\forall n\)
b/
\(\overline{x375y}⋮45\) khi đồng thời chia hết cho 5 và 9
\(\overline{x375y}⋮9\Rightarrow x+3+7+5+y=15+x+y⋮9\Rightarrow x+y=\left\{3;12\right\}\)
\(\overline{x375y}⋮5\Rightarrow y=\left\{0;5\right\}\)
+ Với \(y=0\Rightarrow x=3\Rightarrow\overline{x375y}=33750\)
+ Với \(y=5\Rightarrow x=7\Rightarrow\overline{x375y}=73755\)
c/
\(\frac{6x+45}{2x+3}=\frac{6x+9+36}{2x+3}=\frac{3\left(2x+3\right)+36}{2x+3}=3+\frac{36}{2x+3}\left(x\ne-\frac{3}{2}\right)\)
\(6x+45⋮2x+3\) khi \(36⋮2x+3\) hay 2x+3 là ước của 36
(tiếp)
\(\Rightarrow2x+3=\left\{-36;-18;-12;-9;-6;-4;-3-2;-1;1;2;4;6;9;12;18;36\right\}\)
Từ đó tìm ra x tương ứng
Do a chia hết cho b nên \(a\in B\left(b\right)\left(1\right)\)
b chia hết cho a nên \(a\inƯ\left(b\right)\left(2\right)\)
Từ (1) và (2) ta thấy a vừa là bội của b vừa là ước của b => a = b (đpcm)