K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

Câu 1: A = ( 3 + 3² + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^13 + 3^15 ) + . + ( 3^1991 + 3^1989 + 3^1987 + 3^1985 ) 

A = 2442 + 3^9( 3 + 3² + 3^5 + 3^7 ) + .......... + 3^1985( 3 + 3² + 3^5 + 3^7 ) 

A = 2442 + 3^9 . 2442 + ........... + 3^1985.2442 

Do 2442 chia hết cho 41 => A chia hết cho 41 

( Dơn giản là cxư nhóm 4 số hạng liền nhau của dãy vào với nhau ) 

30 tháng 6 2016

a/2895

b/100

c/8888

30 tháng 6 2016

a) 2895

b) 1000

c) 8888

câu hỏi quá dễ thế ai mà trả biết

29 tháng 6 2016

1) Chữ số tự nhiên có 4 chữ số có:

       9999-1000+1=9000( số)

A) Chữ số chia hết cho 5 nhưng không chia hết cho 2 có chữ số tận cùng là 5

    Chữ số tự nhiên có 4 chữ số chia hết cho 5 nhưng không chia hết cho 2 có:

         (9995-1005):10+1=900(số)

B)Chữ số chia hết cho 2 vá 5 có chữ số tận cùng là 0

   Chữ số tự nhiên có 4 chữ số chia hết cho 2 và 5 có :

        (9990-1000):10+1=900(số)

C)Chữ số chia cho 5 dư 3 có chữ số tận cùng là 3 và 8

   Chữ số tự nhiên có 4 chữ số chia cho 5 dư 3 có:

         (9998-1003):5+1=1800(số)

                   Đáp số :1) 9000 số 

                               A) 900 số

                               B) 900 số

                                C) 1800 số

20 tháng 10 2016

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 tháng 11 2016

bạn chỉ cần tìm ra số tận cùng nhé

6 tháng 9 2017

nhiều thế bố ai làm gấp được

5 tháng 7 2016

a) 10232 + 2

= 1000....0 + 2

  (232 số 0)

= 1000...02

   (231 số 0)

=> tổng các chữ số của 10232 + 2 là: 1 + 0 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3

                                                             231 số 0

=> 10232 + 2 chia hết cho 3

b) 1078 + 8

= 1000...0 + 8

     78 số 0

= 1000...08

    77 số 0

=> tổng các chữ số của 1078 + 8 là: 1 + 0 + 0 + 0 + ... + 0 + 8 = 9 chia hết cho 9

                                                               77 số 0

=> 1078 + 8 chia hết cho 9

Ủng hộ mk nha ^_-

5 tháng 7 2016

a) Ta co 10232 = 102 * (102)115

Ta co 102 đồng dư với 20 = 3*6+2 nên 102 đồng dư với 2

102 đồng dư với 20 = 3*6+2 nên 10đồng dư với 2 do đó (102)115 đồng dư với 2

vay 102 * (102)115 hay 10232 đồng dư với 2*2=4 đồng dư với 1 suy ra 10232 + 2 chia hết cho 3 

                                                                                                                                                                

Trả lời :

Cho A = 3+32+33+34+...+3903+32+33+34+...+390 . Chứng minh rằng A chia hết cho 11 và 13

Bài làm:

Ta có : A = (3+32+33+34+35)+...+(386+387+388+389+390)

= 3(1+3+32+33+34)+...+386(1+3+32+33+34)

= 3 . 121 + 36 . 121 + ... + 386 . 121

= 3 . 11 . 11 + 36 . 11 . 11 + ... + 386 . 11 . 11  11

 A 11

A = ( 3+32+33)+(34+35+36)+...+(388+389+390)

= 3(1+3+32) + 34(1+3+32) + ... + 388(1+3+32)

= 3 . 13 + 34 . 13 + ... + 388 . 13 13

 A  13

Vậy A chia hết cho 11 và 13

Hok_Tốt

#Thiên_Hy

15 tháng 5 2019

ban lm sai roi bn