K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

a/ Đặt \(x^{10}=a\) ta có:

\(A=a^{197}+a^{193}+a^{198}\)

\(=a^{193}\left(a^4+1+a^5\right)\)

\(=a^{193}\left[\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)+\left(a^2+a+1\right)\right]\)

\(=a^{193}\left(a^2+a+1\right)\left(a^3-a+1\right)⋮\left(a^2+a+1\right)\)

Vậy có ĐPCM

4 tháng 12 2017

b/ \(B=7.5^{2n}+12.6^n=\left(7.25^n-7.6^n\right)+19.6^n\)

\(=7\left(25-6\right)G\left(n\right)+19.6^n=7.19.G\left(n\right)+19.6^n⋮19\)

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

Lời giải:

Ta có:

\(A=x^{1970}+x^{1930}+x^{1980}=x^{1930}(x^{50}+x^{40}+1)\)

Xét \(x^{50}+x^{40}+1=x^{30}(x^{20}+x^{10}+1)-(x^{30}-1)\)

\(=x^{30}(x^{20}+x^{10}+1)-(x^{10}-1)(x^{20}+x^{10}+1)\)

\(=(x^{20}+x^{10}+1)(x^{30}-x^{10}+1)\vdots x^{20}+x^{10}+1\)

\(x^{50}+x^{40}+1\vdots x^{20}+x^{10}+1\Rightarrow A\vdots x^{20}+x^{10}+1\)

Do đó ta có đpcm.

30 tháng 11 2017

1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!

30 tháng 11 2017

Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Phần a)

Sử dụng bổ đề \(x^{mn}-1\vdots x^m-1\) với mọi \(m,n \in\mathbb{N}\)

Chứng minh bổ đề:

Thật vậy, theo hằng đẳng thức đáng nhớ:

\(x^{mn}-1=(x^m)^n-1^n=(x^m-1)[(x^m)^{n-1}+(x^m)^{n-2}+...+x^m+1]\vdots x^m-1\)

Bổ đề đc chứng minh.

-----------------------------------

Ta có:

\(x^{400}+x^{200}+1=x^{396}.x^4+x^{198}.x^2+1\)

\(=x^4(x^{396}-1)+x^2(x^{198}-1)+(x^4+x^2+1)\)

Áp dụng bổ đề trên vào bài toán kết hợp với \(x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1\) ta suy ra:

\(x^{396}-1=x^{6.66}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^{198}-1=x^{6.33}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^4+x^2+1\vdots x^4+x^2+1\) (hiển nhiên)

Do đó: \(x^{400}+x^{200}+1\vdots x^4+x^2+1\)

(đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Phần b)

\(F(x)=x^{1970}+x^{1930}+x^{1890}=x^{1890}(x^{80}+x^{40}+1)\)

Thấy rằng:

\(x^{80}+x^{40}+1=(x^{40}+1)^2-x^{40}=(x^{40}+1)^2-(x^{20})^2\)

\(=(x^{40}+1-x^{20})(x^{40}+1+x^{20})\)

Mà: \(x^{40}+1+x^{20}=(x^{20}+1)^2-x^{20}=(x^{20}+1)^2-(x^{10})^2\)

\(=(x^{20}+1-x^{10})(x^{20}+1+x^{10})\vdots x^{20}+x^{10}+1\)

Do đó:

\(x^{80}+x^{40}+1\vdots x^{20}+x^{10}+1\)

3 tháng 9 2018

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3