\((2n+3)^2-9\) chia hết ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

42 phút trước

a: \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\cdot\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=2n\cdot2\left(n+3\right)=4n\left(n+3\right)\)

Vì n;n+3 có khoảng cách giữa hai số là 3 là số lẻ

nên n(n+3)⋮2

=>4n(n+3)⋮4*2=8

=>\(\left(2n+3\right)^2-9\) ⋮8

b: \(\left(4n+3\right)^2-25\)

\(=\left(4n+3+5\right)\left(4n+3-5\right)\)

=(4n+8)(4n-2)

\(=4\left(n+2\right)\cdot2\cdot\left(2n-1\right)=8\left(n+2\right)\left(2n-1\right)\) ⋮8

21 tháng 7 2016

a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)

\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8  

b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)

Vì B chứa thừa số 4 nên B chia hết cho 4

21 tháng 7 2019

a) Vì n lẻ nên n có dạng 2k + 1

\(=>A=\left(2k+1\right)^2+4\left(2k+1\right)+3\)

\(=4k^2+4k+1+8k+4+3\)

\(=4k^2+12k+8=4k\left(k+3k\right)+8\)

Vì k lẻ nên k +3k lẻ \(=>k+3k⋮2=>4k\left(k+3k\right)⋮8=>4k\left(k+3k\right)+8⋮8\)

21 tháng 7 2019

b)\(A=n^3+3n^2-n-3\)

\(=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ nên n- 1 và n + 1 là 2 số chẵn liên tiếp , trong đó có 1 số chia hết cho 4 số còn lại chia hết cho 2

\(=>\left(n-1\right)\left(n+1\right)⋮8\)

Lại có \(n+3⋮2\)(vì n lẻ) nên \(A=n^3+3n^2-n-3⋮16\)(1)

Vì n là số nguyên nên n có dạng 3k , 3k+1 , 3k-1

Thế vào A bạn chứng minh đc số đó chia hết cho 3 mà theo (1) nó chia hết cho 16 nên A chia hết cho 48

\(\left(4n+3\right)^2-25\)

\(=\left(4n+3\right)^2-5^2\)

\(=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)\)

12 tháng 7 2016

xl chia hết cho 8

5 tháng 7 2016

xem lại câu a nhé bạn

24 tháng 6 2016

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

18 tháng 5 2017

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

20 tháng 8 2017

n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

10 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n\)chia hết cho \(5\)với mọi số nguyên \(n\)vì \(-5\)chia hết cho \(5\)

Vậy : \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho \(5\)