Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi tích ba số tự nhiên liên tiếp là n(n+1)(n+2)
=> Có 3 TH
TH1: n chia hết cho 3 => n(n+1)(n+2) chia hết cho 3
TH2: n = 3k + 1 => n+2 chia hết cho 3 => n(n+1)(n+2) chia hết cho 3
TH3: n = 3k+2 => n + 1 chia hết cho 3 => n(n+1)(n+2) chia hết cho 3
=> Tích 3 số tự nhiên liên tiếp đầu chia hết cho 3
b)
Xét:
Nếu n lẻ thì n + 5 chẵn => (n+5)(n+12) chia hết cho 2
Nếu n chẵn thì n + 12 chẵn => (n+5)(n+12) chia hết cho 2
Vậy với mọi n thì (n+5)(n+12) chia hết cho 2
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right).4\)
\(=8\left(n+1\right)\) chia hết cho 8
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b ) \(\left(2n+1\right)^2-1\)
\(=\left(2n+1-1\right)\left(2n+1+1\right)\)
\(=2n.\left(2n+2\right)\)
\(=2.2n\left(n+1\right)\)
\(=4n\left(n+1\right)\)
Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
\(\Rightarrow4n\left(n+1\right)⋮8\).
c ) Gọi 2 số lẻ liên tiếp là \(2n+1\) và \(2n-1\)
Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)
\(=4n.2\)
\(=8n\) chia hết cho 8
Vậy .........
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*