Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a/ \(n=2m+1\)
\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)
b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)
Để nó chia hết thi n + 1 là ước nguyên của 2
\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)
\(\Rightarrow n=\left(-3,-2,0,1\right)\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1/
$A=n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)$
Nếu $n$ lẻ thì $n^2-1$ chẵn $\Rightarrow A\vdots 2$
Nếu $n$ chẵn thì hiển nhiển $A\vdots 2$
Vậy $A\vdots 2(1)$
--------------------
Nếu $n\vdots 3$ thì hiển nhiên $A\vdots 3$
Nếu $n$ không chia hết cho 3. Ta biết 1 scp khi chia cho 3 dư 0 hoặc 1. Mà $n$ không chia hết cho $3$ nên $n^2$ chia 3 dư 1.
$\Rightarrow n^2-1\vdots 3\Rightarrow A\vdots 3$
Vậy $A\vdots 3(2)$
---------------------------
Nếu $n$ chia hết cho 5 thì hiển nhiên $A\vdots 5$
Nếu $n$ không chia hết cho 5: Ta biết 1 scp khi chia 5 dư 0,1 hoặc 4. $n^2$ không chia hết cho 5 nên $n^2$ chia 5 dư 1 hoặc 4.
+ $n^2$ chia 5 dư 1 thì $n^2-1\vdots 5\Rightarrow A\vdots 5$
+ $n^2$ chia 5 dư 4 thì $n^2+1\vdots 5\Rightarrow A\vdots 5$
Vậy tóm lại $A\vdots 5(3)$
Từ $(1); (2); (3)$ mà $2,3,5$ đôi một nguyên tố cùng nhau nên $A\vdots (2.3.5)$ hay $A\vdots 30$