Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích hình trụ có bán kính r và đường cao h có thể tích: V = πr 2 .h
- Nếu tăng gấp đôi bán kính thì thể tích trụ là V 1 = π 2 r 2 h = 4 πr 2 h = 4V
- Nếu tăng gấp đôi chiều cao thì thể tích hình trụ là: V 2 = πr 2 .2h = 2 πr 2 h = 2V
- Nếu tăng gấp đôi bán kính và chiều cao thì thể tích hình trụ là:
V 3 = π 2 r 2 .2h = 8 πr 2 h = 8V
Vậy bạn Ngọc nói đúng.
Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút. Điều kiện x > 0, y > 0.
Ta có 1 giờ 20 phút = 80 phút.
Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai chảy được \(\frac{1}{y}\) bể, cả hai vòi cùng chảy được \(\frac{1}{80}\) bể nên ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\).
Trong 10 phút vòi thứ nhất chảy được \(\frac{10}{x}\) bể, trong 12 phút vòi thứ hai chảy được \(\frac{12}{x}\) bể. Vì cả hai vòi cùng chảy được \(\frac{2}{15}\) bể. Ta được:
\(\frac{10}{x}+\frac{12}{x}=\frac{2}{15}\)
Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\\\frac{10}{x}+\frac{12}{y}=\frac{2}{15}\end{cases}\)
Giải ra ta được x = 120, y = 240.
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).
Gọi x là thời gian vòi 1 chảy vào bể
=> 1:x là lượng nước vòi 1 chảy vào bể trong 1 giờ.
x + 5 la thời gian vòi 2 chay vào bể
=> 1:(x + 5) là lượng nước vòi 2 chảy vào bể trong 1 giờ.
Ta có phương trình:
1:x + 1:(x+5) = 1:6
Giải phương trình ta sẽ có kêt quả là 10.
Vậy thời gian vòi 1 chảy đầy bể là 10 giờ.
thời gian vòi 2 chảy đầy bể là 15 giờ.
Gọi thười gian chảy riêng để mồi vòi chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hpt \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\\\dfrac{18}{a}+\dfrac{3}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{24}\\\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=24\\b=12\end{matrix}\right.\left(tm\right)\)