K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

a) Ta có \(A=a^3-6a^2-7a+12=\left(a-1\right)\left(a^2-5a+12\right)=\left(a-1\right)\left(a^2-5a+6\right)+6\left(a-1\right)\)

=\(\left(a-1\right)\left(a-2\right)\left(a-3\right)+6\left(a-1\right)\)

Mà (a-1)(a-2)(a-3) là tích 3 số nguyên liên tiếp => cúng chia hết cho 6 => ... chia hết cho 6(ĐPCM)

^_^

30 tháng 1 2018

Có ai kg giúp mình bài này với

9 tháng 1 2021

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).

 

10 tháng 8 2016

2

\(pt\Leftrightarrow x^2\left(1-y^2\right)+y.x+y^2=0\text{ (1)}\)

+Xét trường hợp \(1-y^2=0\Leftrightarrow y=\pm1\)

\(y=1\text{ thì }pt\rightarrow x+1=0\Leftrightarrow x=-1\)

\(y=-1\text{ thì }pt\rightarrow-x+1=0\Leftrightarrow x=1\)

+Xét \(y=0\)\(pt\rightarrow x=0\)

+Xét \(y\ne0;-1;1\Rightarrow\left|y\right|\ge2\Rightarrow y^2-1\ge3\)

\(pt\Leftrightarrow x^2\left(1-y^2\right)+y.x+y^2=0\text{ (1)}\)

\(\Delta\text{ (}x\text{) }=y^2-4\left(1-y^2\right)y^2=y^2\left(4y^2-3\right)\)

Để phương trình (1) có nghiệm x là một số nguyên thì \(\Delta\)phải là bình phương của một số hữu tỉ.

Khi đó, (1) có nghiệm \(x=\frac{-y\pm\sqrt{y^2\left(4y^2-3\right)}}{1-y^2}=\frac{-y\pm y\sqrt{4y^2-3}}{1-y^2}\)

Ta thấy ngay: \(\hept{\begin{cases}-y\in Z\\1-y^2\in Z\\1-y^2\le-3\end{cases}}\)nên nếu \(\sqrt{4y^2-3}\notin Z\) thì \(x\notin Z\)

Vậy ta cần \(\sqrt{4y^2-3}\in Z\Leftrightarrow4y^2-3=k^2\text{ }\left(k\in Z\text{+}\right)\)

\(\Leftrightarrow\left(2y+k\right)\left(2y-k\right)=3\)

Do \(k>0\) nên \(2y+k>2y-k\) và hai số trên đều nguyên nên xảy ra các trường hợp

\(\hept{\begin{cases}2y+k=3\\2y-k=1\end{cases}\text{ hoặc }\hept{\begin{cases}2y-k=-3\\2y+k=-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\k=1\end{cases}}\text{ hoặc }\hept{\begin{cases}y=-1\\k=1\end{cases}}\)

Loại hết vì đang xét \(\left|y\right|\ge2\)

Vậy các nghiệm nguyên của hệ là \(\left(x;y\right)=\left(0;0\right);\text{ }\left(-1;1\right);\text{ }\left(1;-1\right)\)

10 tháng 8 2016

\(1.\)  Cho  \(a+b+c=1\)  với  \(a,b,c>0\)

Chứng minh rằng:  \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\left(1\right)\) 

\(--------\)

\(\left(1\right)\)  \(\Leftrightarrow\)  \(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\le\sqrt{6}\left(2\right)\)

Ta cần chứng minh bđt  \(\left(2\right)\) luôn đúng với mọi số thực  \(a,b,c>0\)

Thật vậy, áp dụng bđt Cauchy cho hai số dương, ta được:

\(\hept{\begin{cases}\sqrt{\frac{2}{3}\left(1-a\right)}\le\frac{1-a+\frac{2}{3}}{2}=\frac{5-3a}{6}\\\sqrt{\frac{2}{3}\left(1-b\right)}\le\frac{5-3b}{6}\\\sqrt{\frac{2}{3}\left(1-c\right)}\le\frac{5-3c}{6}\end{cases}}\)

Do đó,  \(\sqrt{\frac{2}{3}}\left(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\right)\le\frac{15-3\left(a+b+c\right)}{6}=\frac{15-3.1}{6}=2\)

hay nói cách khác,  \(\sqrt{\frac{2}{3}}VT\left(2\right)\le2\)

\(\Rightarrow\)  \(VT\left(2\right)\le\sqrt{\frac{3}{2}}.2=\sqrt{6}=VP\left(2\right)\)

Vậy, bđt  \(\left(2\right)\)  được chứng minh nên kéo theo bđt   \(\left(1\right)\)  luôn đúng với mọi  \(a,b,c>0\)

Đẳng thức trên xảy ra khi và chỉ khi  \(a=b=c=\frac{1}{3}\)

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

13 tháng 5 2021

a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)

\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )

15 tháng 5 2021

Câu a:  Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m

    ⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m

Câu b:

Để phương trình có 2 nghiệm nguyên thì  \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)  

9 tháng 12 2017

mik lp6

nên k bít

xin lỗi ha

6 tháng 2 2018

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

9 tháng 8 2023

Biện pháp tu từ được sử dụng trong câu "sương vô tình đậu trên mắt rưng rưng" là sự lặp lại âm tiết "rưng rưng". Tác dụng của biện pháp này là tạo ra hiệu ứng âm thanh đặc biệt, tăng cường tính hài hòa và nhấn mạnh sự mơ hồ, mờ ảo của cảnh tượng mà câu muốn diễn tả. Ngoài ra, biện pháp tu từ còn giúp tạo ra sự nhấn mạnh, tăng cường tính cảm xúc và sự chú ý của người đọc đối với câu. có đúng khum thì ko bít nữa nhớ tick ạ

9 tháng 8 2023

nhầm bài r bạn

6 tháng 2 2018

a) Ta có: x + y + z = 3

=> xy + yz + xz = 2(x + y + z) = 2.3 = 6

Vậy Bmax = 6

c) Vì a + b + c = 1

Nên ta đi chứng minh: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Có \(a+b+c\ge3^3\sqrt{abc}\) (BĐT Cô si)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\) (BĐT Cô si)

Nhân vế với vế \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

(Em chưa học lớp 9 nên chỉ biết làm tới đây thôi!)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

3 tháng 1 2020

a) xy2 + 2xy - 243y + x = 0

\(\Leftrightarrow\)x ( y + 1 )2 = 243y

Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2

Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }

+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)

+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)

vậy ...

b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )

\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)

Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)

Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2