K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2022

a; \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+...+2^{2001}\right)\) chia hết cho 3 và 15

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2002}\right)⋮7\)

b: \(3B=3^2+3^3+...+3^{2006}\)

=>\(2B=3^{2006}-3\)

=>\(2B+3=3^{2006}\) là lũy thừa của 3

26 tháng 7 2021

1A

2C

3C

Câu 1: A

Câu 2: C

Câu 3: C

13 tháng 5 2016

Ta có: 

\(A=3+3^2+3^3+...+3^{2004}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2002}+3^{2003}+3^{2004}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2002}\left(1+3+3^2\right)\)

\(=\left(3+3^4+...+3^{2002}\right)\left(1+3+3^2\right)\)

\(=\left(3+3^4+...+3^{2002}\right).13\)

=> A chia hết cho 13                  (1)

Lại có: 

\(A=3+3^2+3^3+...+3^{2004}\)

\(=\left(3+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{2001}+3^{2003}\right)+\left(3^{2002}+3^{2004}\right)\)

\(=3\left(1+3^2\right)+3^2\left(1+3^2\right)+...+3^{2001}\left(1+3^2\right)+3^{2002}\left(1+3^2\right)\)

\(=\left(3+3^2+...+3^{2001}+3^{2002}\right)\left(1+3^2\right)\)

\(=\left(3+3^2+...+3^{2001}+3^{2002}\right).10\)

=> A chia hết cho 10                 (2)

Từ (1) (2) suy ra A chia hết cho 130

13 tháng 5 2016

Ta có: 3A   = 3(3+32+...+32004)

           3A   = 32+33+...+32005

           3A-A= 32005 + 3

            2A   = 32005 +3

             A     = 32005 + 3 / 2

Vì A có 2004 số hạng, nhóm A thành các nhóm, mỗi nhóm có 4 số hạng

    =>A=(3+32 +33 +34 )+(35+36 +37+38)+...+(32001+32002+32003+32004)

         A=(3+32+33+34)+34(3+32+33+34)+...+32000(3+32+33+34)

         A=(1+34+...+32000)(3+32+33+34)

         A=(1+34+...+32000).180(chia hết cho 180)

Vậy A chia hết cho 180 (đpcm)

Câu 2: 

\(2\left(3x-4\right)-3\left(2x+3\right)+\left(3-5x\right)-\left(-4x+2\right)=0\)

\(\Leftrightarrow6x-8-6x-9+3-5x+4x-2=0\)

=>-x-16=0

=>x=-16

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

28 tháng 11 2018

toan lop 6

25 tháng 11 2022

a: \(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)\)

\(=14\left(1+2^3+...+2^{57}\right)⋮14\)

b: \(=\left(3+3^2\right)+3^3\left(3+3^2\right)+...+3^{19}\left(3+3^2\right)\)

\(=12\left(1+3^3+...+3^{19}\right)⋮12\)

12 tháng 12 2021

a: \(A\cap B=\varnothing\)

\(A\cup B=\left[-2;7\right]\)

A\B=[-2;0]

B\A=[1;7]