K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)

\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)

Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)

Vậy minB(x)=-65/4 khi x=5/2

\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)

\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)

\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)

\(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)

Dấu  "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy maxC(x)=1/4 khi x=-1/2

9 tháng 7 2016

\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)

\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)

\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x

=>A(x) vô nghiệm (đpcm)

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

10 tháng 10 2021

Toán lớp 8 nha, mình nhầm

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

22 tháng 6 2019

Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt

a) \(|3x-1|-|2x+3|=0\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

       \(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)

Lập bảng xét dấu :

3x-1 2x+3 -3/2 1/3 0 0 - - - + + +

+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)-\left(-2x-3\right)=0\)

\(1-3x+2x+3=0\)

\(-x+4=0\)

\(x=4\)( chọn )

+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(1-3x\right)-\left(2x+3\right)=0\)

\(1-3x-2x-3=0\)

\(-5x-2=0\)

\(x=\frac{-2}{5}\)( chọn )

+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)-\left(2x+3\right)=0\)

\(3x-1-2x-3=0\)

\(x-4=0\)

\(x=4\)( chọn )

Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)

22 tháng 6 2019

Bài 2:

a) Ta có: \(|2x+1|\ge0\forall x\)

\(\Rightarrow|2x+1|-7\ge0-7\forall x\)

Hay \(A\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)

b) ko biết

c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)

Hay \(C\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)

( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )

2 tháng 9 2017

Bài : 5 

a) Ta có : A = 3 + |4 - x|

Vì : \(\left|4-x\right|\ge0\forall x\)

Nên : A = 3 + |4 - x| \(\ge3\forall x\)

Vậy Amin = 3 khi x = 4

b) Ta có : B = 5|1 - 4x| - 1 

Vì  \(\text{5|1 - 4x|}\ge0\forall x\)

Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)

Vậy Bmin = -1 khi x = 1/4

2 tháng 9 2017

a)\(\left|2x-3\right|=6\)

\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

b)\(2.\left|3x+1\right|=5\)

\(\left|3x+1\right|=2,5\)

\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

c)\(7,5-3\left|5-2x\right|=-4,5\)

\(3\left|5-2x\right|=12\)

\(\left|5-2x\right|=4\)

\(...\)

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2