Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|a| + |b| >= |a+b|
<=> (|a|+|b|)^2 >= |a+b|^2
<=> a^2+b^2 +2|ab| >= a^2+b^2+2ab
<=> |ab| >= ab (luôn đúng)
Dấu = xảy ra khi a,b cùng dấu
1) a2 - ab + b2 ≥ 0
<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0
<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b = 0
2) a2 - ab + b2 ≥ 1/4( a + b )2
<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2
<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0
<=> 3a2 - 6ab + 3b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b
Bình 2 vế
\(\left(a+b\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\le a^2+2\left|ab\right|+b^2\)
\(\Rightarrow ab\le\left|ab\right|\) (luôn đúng)
Vậy \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
Dấu "=" xảy ra khi \(ab=\left|ab\right|\Leftrightarrow ab\ge0\)
-A - B = -A - B
Lúc nào chả là dấu bằng , còn dấu < thì ko biết
Giá trị nhỏ nhất là : A và B càng lớn thì càng nhỏ
Thế thôi
a2(1+b2) + b2(1+c2) + c2(1+a2) = a2 + a2b2 + b2 + b2c2 + c2 + a2c2
Áp dụng bất đẳng thức Cô si cho 6 số không âm a2, a2b2, b2, b2c2, c2, a2c2 ta được:
a2 + a2b2 + b2 + b2c2 + c2 + a2c2 >= 6\(\sqrt{a^6b^6c^6}\)= 6abc
=> a2(1+b2) + b2(1+c2) + c2(1+a2) >= 6abc
Dấu = xảy ra khi
a2=a2b2=b2=b2c2=c2=a2c2
a=b=c=+-1