Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho $x=1, y=6, z=5$ thì $100x+10y+10z=210\vdots 21$ nhưng $x-2y+4z=1-2.6+4.5=9$ không chia hết cho 21.
Do đó đề sai. Bạn xem lại nhé.
100x + 10y + z chia hết cho 21 nên cũng chia hết cho 3 và 7
ta có: x - 2y + 4z = (100x + 10y + z) - (99x + 12y -3z) mà 100x + 10y +z và 99x + 12y -3z đều chia hết cho 3 nên x - 2y + 4z chia hết cho 3
Có: 2.(x - 2y + 4z) = (100x + 10y + z) - (98x + 14y -7z) mà 100x + 10y +z và 98x+ 14y -7z đều chia hết cho 7 nên 2.(x - 2y + 4z) chia hết cho 7 mà 2 không chia hết cho 7 nên x - 2y + 4z chia hết cho 7
=> x - 2y + 4z đều chia hết cho 3 và 7 nên sẽ chia hết cho 21
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Câu a)
Do a chia hết cho b nên ta có thể giả sử a = bk ( với a, b, k thuộc N )
Khi đó ƯCLN ( a, b ) = ƯCLN ( bk, b ).
Mà ƯCLN ( bk, b ) = b nên ƯCLN ( a, b ) = b ( đpcm )
Bài 1:
Để A chia hết cho 3 thì 48+x chia hết cho 3
hay x chia hết cho 3
Để A không chia hết cho 3 thì x+48 không chia hết cho 3
hay x không chia hết cho 3
Bài 2:
a=24k+10=2(12k+5) chia hết cho 2
a=24k+10=24k+8+2=4(6k+2)+2 không chia hết cho 4
1. Cho tổng A = 12+15+21+x với x \(\in\) \(ℕ\). Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
- Để A chia hết cho 3 thì x chia hết cho 3.
- Để A không chia hết cho 3 thì x không chia hết cho 3.
2. Khi chia số tự nhiên a cho 24, ta đc số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
3. Đề thiếu
a chia hết cho 2 vì 24 và 10 đều chia hết cho 2
a không chia hết cho 4 vì 24 chia hết cho 4 nhưng 10 không chia hết cho 4