Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
Ta có f (x) = ax2 + bx + c chia hết cho 3 với mọi gt của x
Nếu x = 0 => c \(⋮\)3
Nếu x = 1 => a + b + c \(⋮\)3 => a + b \(⋮\)3 => \(\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
Vậy ...
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
xét x=o nên f(x) = c nên c chia hết cho 3
xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)
xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)
từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3
Ta có f(0)=c chia hết cho 3.
f(1)=a+b+c chia hết cho 3 mà c chia hết cho 3 nên a+b chia hết cho 3.
f(-1)=a-b+c chia hết cho 3=> a-b chia hết cho 3.
Ta có (a+b)+(a-b)=2a chia hết cho 3. Mà 2,3 nguyên tố cùng nhau nên a chia hết cho 3.
a+b+c chia hết cho 3, a,c chia hết cho 3=> b chia hết cho 3
a) Ta có: 3a+2b⋮17
⇔8(3a+2b)⋮17
Ta có: 8(3a+2b)+10a+b
=24a+16b+10a+b
=34a+17b
=17(2a+b)⋮17
hay 8(3a+2b)+(10a+b)⋮17
mà 8(3a+2b)⋮17(cmt)
nên 10a+b⋮17(đpcm)
b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)
\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)
mà F(x)⋮3
nên F(0)⋮3; F(1)⋮3; F(-1)⋮3
hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3
Ta có: F(1)+F(-1)⋮3(cmt)
⇔a+b+c+a-b+c⋮3
hay 2a+2c⋮3
⇔a+c⋮3
mà c⋮3(cmt)
nên a⋮3(đpcm1)
Ta có: F(1)-F(-1)⋮3(cmt)
⇔a+b+c-a+b-c⋮3
hay 2b⋮3
mà 2\(⋮̸\)3
nên b⋮3(đpcm2)