a) Chứng minh nếu x + y + z = 0 thì x 3  ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

a) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

5 tháng 4 2019

câu b đâu

10 tháng 2 2020

Ta có : \(x+y+z=0\)

\(\Leftrightarrow x+y=-z\) \(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

* Áp dụng :
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3ab.bc.ca=3a^2b^2c^2\)
Khi đó \(M=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)

15 tháng 12 2016

giúp mk vskhocroi

20 tháng 12 2016

bài 1: ... phá hết ra

bài 2

câu a, tách -2x^2 thành -x^2-x^2 rồi tự giải quyết

câu b, thêm bớt 1 để tạo hằng đẳng thức

câu c, đổi z-x thành -x-z

câu d là hằng đẳng thức đó má nội

mình rất muốn làm hết nhưng cái tật lười nó ko cho mình làm, mong bạn thông cảm

17 tháng 1 2017

a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3

                            = (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)

                            = -3xy(x+y)                                 (do x+y+z=0)

            Vì x+y+z=0  =>x+y=-z

=> -3xy(x+y)=3xyz

 Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào

   Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz

27 tháng 6 2016

batngo

10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

29 tháng 11 2019

Câu a bạn xét giá trị riêng nha

A=x2(y-z) + y2(z-x) + z2(x-y)

Thay x bởi y, ta có 

A= y2 (y-z) + y2(z-y) + z2(y-y) = 0

=> A chứa nhân tử x-y

Tương tự A chứa nhân tử y-z, z-x

=> A có tích (x-y)(y-z)(z-x)

Ta thấy biểu thức A có bậc 3, tích (x-y)(y-z)(z-x) cũng có bậc là 3 nên A có dạng tổng quát: A= k(x-y)(y-z)(z-x)   ( k thuộc R)

Ta có đẳng thức :   x2(x-y)  + y2(z-x) +z2( x-y) = k(x-y)(y-z)(z-x)     với mọi x,y,z

Cho x=0,y=1,z=2 => -2 = 2k  => k=-1

Vậy A= -(x-y)(y-z)(z-x)

29 tháng 11 2019

b) a7 + a +1 = a7 + a6 - a6 - a5 +a+ a4 -a4 - a3 + a3 + a2 +a +1

                   = a6 (a+1) - a5 (a+1) +a4 (a+1) -a3 (a+1) +a2(a+1) +(a+1)

                   =(a+1)( a6 - a5 + a4 - a3 + a2 +1)

18 tháng 11 2015

đừng tin Tên đẹp thật

cậu ta lừa bn lik e rùi ko giải đâu