\(\frac{x}{y}+\frac{y}{x}\ge2\)(với x và y cùng dấu) <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

b)áp dụng Bđt cô si

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)

\(\Rightarrow P\ge2+\left(-5\right)+5=1\)

Dấu = khi x=y

14 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

Dấu = khi \(x=y\)

 

 

 

28 tháng 11 2016

\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3=0\)

\(\Leftrightarrow\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1=0\)

\(\Leftrightarrow\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=0\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\), luôn đúng

=> đpcm

1 tháng 9 2019

Bài 11 là \(a+b+c=0\)thôi nha, không có a;b;c khác 0 đâu tui bị nhầm đó, xin lỗi nhiều ;;;

NV
2 tháng 4 2019

Bài 1:

a/\(xy\ne0\), nhân cả tử và mẫu với \(xy\) ta được:

\(\frac{x^2+y^2-2xy}{x^2-y^2}=\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\frac{x-y}{x+y}\)

b/ \(x\ne\pm1\), nhân cả tử và mẫu với \(x^2-1=\left(x-1\right)\left(x+1\right)\) ta được:

\(\frac{x^2-1-2\left(x-1\right)}{x^2-1-\left(x^2-2\right)}=\frac{x^2-2x+1}{1}=\left(x-1\right)^2\)

c/ \(x\ne\pm1\), nhân cả tử và mẫu với \(\left(x-1\right)\left(x+1\right)\) ta được:

\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)-\left(x-1\right)^2}=\frac{x^2+2x+1-x^2+2x-1}{x^2-1-x^2+2x-1}=\frac{4x}{2x}=2\)

NV
2 tháng 4 2019

Bài 2:

a/ Xem lại đề, thấy có vẻ ko đối xứng lắm, \(\frac{2x+1}{2x-2}\) hay \(\frac{2x+1}{2x-1}\) bạn?

b/ \(x\ne\left\{-1;0;1\right\}\)

\(B=\left(\frac{1}{x\left(x+1\right)}+\frac{x-2}{x+1}\right):\left(\frac{x^2-2x+1}{x}\right)\)

\(B=\left(\frac{1}{x\left(x+1\right)}+\frac{x\left(x+2\right)}{x\left(x+1\right)}\right).\frac{x}{\left(x-1\right)^2}\)

\(B=\frac{\left(x^2+2x+1\right)}{x\left(x+1\right)}.\frac{x}{\left(x-1\right)^2}\)

\(B=\frac{\left(x+1\right)^2}{x\left(x+1\right)}.\frac{x}{\left(x-1\right)^2}=\frac{x+1}{\left(x-1\right)^2}\)

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số: a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\) Bài 2: Thực hiện phép tính: a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\) Bài 3: Cho...
Đọc tiếp

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số:

a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\)

Bài 2: Thực hiện phép tính:

a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\)

Bài 3: Cho biểu thức \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

a) Hãy tìm điều kiện của x để biểu thức được xác định.

b) Rút gọn biểu thức.

Bài 4: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

a) Rút gọn biểu thức A.

b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)

c) Tìm giá trị của x để A < 0.

Các cậu giúp tớ với nha ~ Tớ cảm ơn trước ^^

5
AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Bài 2:

a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$

\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)

\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)

\(=\frac{10}{2x+1}\)

b) ĐK : $x\neq 0;-1$

\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)

\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)

b)

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)

\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)

\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)

27 tháng 3 2020
https://i.imgur.com/PTEMisy.jpg
27 tháng 3 2020

https://hoc24.vn/hoi-dap/question/697806.html

2 tháng 4 2019

Ahuhu, không ai biết cách giải ư ? T^T

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)