Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
Ta có :
\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{2009}.3\)
\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)
Ta có :
\(2+2^2+2^3+2^4+....+2^{2010}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+....+2^{2008}.7\)
\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)
Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
TK :
A=(2+22)+(23+24)+...+(22009+22010)
A=(1+2)(2+23+...+22009)=3(2+...+22009)⋮3
A=(2+22+23)+...+(22008+22009+22010 )
A=(1+2+22)(2+...+22008)=7(2+...+22008)⋮7
Em xem lại đề nhé vì A như thế không chia hết cho 3 và cho 7
a: \(B=3^1+3^2+...+3^{2010}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2008}\right)⋮13\)
b: \(C=5^1+5^2+...+5^{2010}\)
\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+...+5^{2008}\right)⋮31\)
c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{2008}\right)⋮57\)
A = 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
= (2¹ + 2²) + (2³ + 2⁴) + ... + (2²⁰⁰⁹ + 2²⁰¹⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2²⁰⁰⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2²⁰⁰⁹.3
= 3.(2 + 2³ + ... + 2²⁰⁰⁹) ⋮ 3
Vậy A ⋮ 3 (1)
A = 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
= (2¹ + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰⁰⁸ + 2²⁰⁰⁹ + 2²⁰¹⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰⁰⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2²⁰⁰⁸.7
= 7.(2 + 2⁴ + ... + 2²⁰⁰⁸) ⋮ 7
Vậy A ⋮ 7 (2)
Từ (1) và (2) ⇒ A ⋮ 3 và A ⋮ 7
\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{2008}\right)⋮7\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
\(A=2^1+2^2+2^3+2^4+...\)\(+2^{2010}\)
a)
Chia hết cho 3 :
\(A=2^1+2^2+2^3+2^4+...\)\(+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\)\(\left(2^{2009}+2^{2010}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+\)\(2^{2009}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2009}.3\)
\(=3.\left(2+2^3+...+2^{2009}\right)\)\(⋮3\)
Các câu còn lại làm tương tự vậy bạn nhé nhưng riêng câu chia hết cho 7 và chia hết cho 13 thì gộp 3 số lại nhé vì dài quá nên mình làm thế thôi