\(7^6+7^5-7^4⋮55\)

b)  Chứng minh :  \(16^5...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

a)

\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\) chia hết cho 55 (đpcm )

b)

\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\) chia hết cho 33 (đpcm )

c)

\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)

\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}.405\) chia hết cho 405 (đpcm )

22 tháng 11 2016

Bài 1: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\) (1)

Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)

Thay vào (1) ta có:

\(\frac{a^2+ab}{b^2+ab}=\frac{a}{b}\Rightarrow\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\) (luôn đúng)

Vậy ta có điều phải chứng minh

19 tháng 6 2019

#)Giải :

Ta có : \(\left(81^7-27^9-9^{13}\right)\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}.3^2-3^{26}.3-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{26}.5\)

\(=3^{22}.3^4.5\)

\(=3^{22}.405\)chia hết cho 405 ( đpcm )

19 tháng 6 2019

Sửa đề: Chứng minh cái biểu thức trên chia hết cho 405.

Thật vậy,xét theo mod405:

\(81^7\equiv81^5.81^2\equiv81.81^2\equiv81\left(mod405\right)\)

\(27^9\equiv27^5.27^4\equiv162.81\equiv162\left(mod405\right)\)

\(9^{13}\equiv9^7.9^6\equiv324.81\equiv324\)

Suy ra \(81^7-27^9-9^{13}\equiv81-162-324\equiv-405\equiv0\left(mod405\right)\)

Hay ta có đpcm.

29 tháng 6 2017

Ta có: \(81^7-27^9-9^{13}\)\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{22}.\left(3^6-3^5-3^4\right)\)

\(=3^{22}.\left(729-243-81\right)\)

\(=3^{22}.405⋮405\)

Vậy \(81^7-27^9-9^{13}⋮405\)

29 tháng 6 2017

\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=\left(3^{26}.3^2\right)-\left(3^{26}.3\right)-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{26}.5\)

\(=3^{22}.3^3.5\)

\(=3^{22}.405⋮405\)

\(\Leftrightarrow81^7-27^9-9^{13}⋮405\rightarrowđpcm\)

29 tháng 6 2017

\(81^7-27^9-9^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=\left(3^{26}.3^2\right)-\left(3^{26}.3\right)-\left(3^{26}.1\right)\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{26}.5\)

\(=3^{22}\left(2^3.5\right)\)

\(=3^{22}.405⋮405\)

\(\Leftrightarrow81^7-27^9-9^{13}⋮405\)

\(\rightarrowđpcm\)

26 tháng 10 2016

a)\(2^k>2k+1\left(1\right)\)

Với n=3, ta có:\(VT=8;VP=7\), nên (1) đúng nới n=3

Giả sử (1) đúng với \(k=n\), tức là \(2^n>2n+1\left(n\in N\text{*};n\ge3\right)\)

Ta sẽ chứng minh (1) đúng với \(k=n+1\) tức là phải chứng minh \(2^{n+1}>2\left(n+1\right)+1\)

Thật vậy, từ giả thiết quy nạp, ta có:

\(2^{n+1}=2\cdot2^n>2\left(2n+1\right)=4n+2=2n+3+\left(2n-1\right)>2n+3\), do \(\left(n\in N\text{*},n\ge3\right)\)

Vậy (1) đúng với mọi số nguyên \(k\ge3\)

 

 

26 tháng 10 2016

b)\(n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left[\left(n^3+n^2\right)+\left(5n^2+5n\right)+\left(6n+6\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

\(120⋮24\) =>Đpcm

28 tháng 8 2019

Tạm kí hiệu đồng dư là \(\exists\)

Với a2+b2+c2 chẵn hiển nhiên có điều phải chứng minh

Với a2+b2+c2 lẻ, xét 2 trường hợp

TH1: trong 3 số a,b,c có 1 số lẻ, 2 số chẵn giả sử số lẻ là a

Ta có a2\(\exists\)1(mod 8), do đó để a2+b2+c2\(\exists\)7(mod 8) thì b2+c2\(\exists\)(mod 8)

Vì b,c chẵn nên ta đặt b=2m,c=2n =>4(m2+n2)\(\exists\)6(mod 8)<=>4m2+4n2-6 chia hết cho 8

<=>2(2m2+2n2-3) chia hết cho 8<=>2m2+2n2-3 chia hết cho 4 (chỗ nãy không biết có đúng không) (1)

Ta thấy (1) không thể xảy ra do 2m2+2n2-3 là số lẻ

TH2:a,b,c là 3 số lẻ

Ta có ngay a2\(\exists\)1(mod 8),b2\(\exists\)1(mod 8),c2\(\exists\)1(mod 8)

=>a2+b2+c2\(\exists\)3 (mod 8)

Nói tóm lại a2+b2+c2 không thể đồng dư với 7 modulo 8