Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1x2x3x4)x...x58+(3x12x21x30)x..x174
A=...0x...x58+...0x...x174
A=...0+...0
A=..0
vậy A có tận cùng=0
A=(13x1x2x3x4x...x12x14x...x58)+(39x3x12x21x30x48x...x174)
vì 13;39 đều chia hết 13 mà 13 chia hết 377 nên A chia hết 377
Bạn tham khảo bài sau nhé:
https://hoidap247.com/cau-hoi/2044248
b) Đặt \(B=1\cdot4\cdot7\cdot10\cdot...\cdot58\)
Vì trong dãy số B, quy luật sẽ là kể từ số thứ 2 thì số sau bằng số trước thêm 3 đơn vị nên \(B=1\cdot4\cdot7\cdot10\cdot13\cdot...\cdot58\)
\(\Leftrightarrow B⋮13\cdot58\)
\(\Leftrightarrow B⋮13\cdot29\)
hay \(B⋮377\)
Đặt \(C=3\cdot12\cdot21\cdot30\cdot...\cdot174\)
Vì trong dãy số C có quy luật là các số chia 9 dư 3 nên \(C=3\cdot12\cdot21\cdot30\cdot39\cdot...\cdot174\)
\(\Leftrightarrow C=3\cdot12\cdot21\cdot30\cdot3\cdot13\cdot...\cdot29\cdot6\)
\(\Leftrightarrow C⋮13\cdot29\)
\(\Leftrightarrow C⋮377\)
Ta có: \(A=1\cdot4\cdot7\cdot10\cdot...\cdot58+3\cdot12\cdot21\cdot30\cdot...\cdot174\)
\(\Leftrightarrow A=B+C\)
mà \(B⋮377\)(cmt)
và \(C⋮377\)(cmt)
nên \(A⋮377\)(đpcm)
a,a, Ta có : 1.4.7.10.....581.4.7.10.....58 có 11 số tròn chục là 1010 nên dãy tích này có tận cùng là : 00
Lại có : 3.12.30.....1743.12.30.....174 có 11 số tròn chục là : 3030 nên dãy tích này có tận cùng là 0.0.
⇒A⇒A có tận cùng là : 0+0=00+0=0
Vậy , AA có tận cùng là : 00
b,b, Ta có : 13.58=75413.58=754 ⋮ 377⇒1.4.7.10.....58377⇒1.4.7.10.....58 ⋮ 377377
Lại có : 13.29=37713.29=377 ⋮ 377⇒3.12.30.....174377⇒3.12.30.....174 ⋮ 377377
⇒(1.4.7.10.....58)+(3.12.30.....174)⇒(1.4.7.10.....58)+(3.12.30.....174) ⋮ 377
Để mình giải giúp ha !!
ta có 20a20a20a=20a20a . 1000 +20a =(20a . 1000+20a)1000+20a
=1001 . 20a . 1000 + 20a
Theo đề bài 20a20a20a chia hết cho 7 , mà 1001 chia hết cho 7 nên => 20a chia hết cho 7
nên (4 + a) chia hết cho 7 . Vậy a = 3
b)ta co:ab+ba=(a.10+b)+(b.10+a)=11a+11b
suy ra ab+ba chia het cho 11
B1 a
gọi 4 số TN liên tiếp là :
a ; a+1 ;a+2 ;a+3
lấy a+3-a=3 chia hết cho 3
Bài 2
có 4n+3 chia hết cho 2n+1 (1)
lại có 2n+1 chia hết cho 2n+1
=>4n+2 chia hết cho 2n+1 (2)
Lấy (1)-(2)
=>1chia hết cho 2n+1
=>2n+1=1 hoăc -1
tự giải tiếp
bài 1
Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N
=> 9^ 2n-1
= máy tính bỏ túi là xong
bài 2
a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)
98^ 4=(...6)
97^ 3=97^ 2 .97=(...9)(..7)=(..3)
96 ^2=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
bài 3
A = 405 n + 2^405 + m2
405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
bài 4
a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4
+) Nếu n ⋮ 2 thì n = 2k ( k ∈N)
Suy ra : n + 6 = 2k + 6
Vì ( 2k + 6) ⋮ 2 nên (n+3)(n+6) ⋮ 2
+) Nếu n ⋮̸⋮̸ 2 thì n = 2k + 1 (k ∈N )
Suy ra n + 3 = 2k + 1 + 3 = 2k + 4
Vì ( 2k +4) ⋮ 2 nên (n+3)(n+6) ⋮ 2
Vậy (n+3)(n+6) chia hết cho 2 với mọi số tự nhiên n