K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CB
1
KT
14 tháng 7 2018
Đặt \(A=\left(n+2014^{2015}\right)\left(n+2015^{2014}\right)\)
- \(n=2k\)thì: \(n+2014^{2015}=2k+2014^{2015}\)\(⋮\)\(2\) \(\Rightarrow\)\(A⋮2\)
- \(n=2k+1\)
Ta có: \(n=2k+1\equiv1\left(mod2\right)\)
\(2015^{2014}\equiv1\left(mod2\right)\)
\(\Rightarrow\)\(n+2015^{2014}\)\(⋮2\)\(\Rightarrow\)\(A⋮2\)
Vậy
11 tháng 10 2018
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
LH
9 tháng 10 2015
a) Có:(2014-4):3+1=671 số hạng
S=(2014+4).671:2=677039
c) ..........................................................
a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014
A = ( 2014 + 20142 ) + ( 20143 + 20144 ) + ..... + ( 20142013 + 20142014 )
A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )
A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015
A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015
b) Ta có 6 chia hết cho n - 1
=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }
Nếu n - 1 = 1 => n = 2 (tm)
Nếu n - 1 = 2 => n = 3 (tm)
Nếu n - 1 = 3 => n = 4 (tm)
Nếu n - 1 = 6 => n = 7 (tm)
Vậy n thuộc { 2 ; 3 ; 4 ; 7 }
Mk ko chắc là đúng
hok tốt