Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tc của dãy tỉ số = nhau :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\Leftrightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}z-x=2x-2z\\y-x=2x-2y\\z-y=2y-z\end{cases}\Leftrightarrow\hept{\begin{cases}3x=3z\\3x=3y\\3y=3z\end{cases}}\Leftrightarrow x=y=z}\)
thay vào B ta đc : \(B=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=8\)
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Khi x + y + z = 0
=> x + y = -z ; y + z = -x ; z + x = -y
Khi đó \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z.\left(-x\right).\left(-y\right)}{y.z.x}=-1\)
Khi x + y + z \(\ne\)0
=> x = y = z
Khi đó \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)
Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)
Tương tự: \(y+z=2x,z+x=2y\)
Khi đó: \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)
Vậy A=8.
Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn
\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
\(\text{Ta có: }x-y-z=0\Rightarrow x=y+z\)
\(y=x-z\)
\(z=x-y\)
\(\text{Mặt khác: }A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\left(\frac{x}{x}-\frac{z}{x}\right)\left(\frac{y}{y}-\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{x-y}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{-\left(y-x\right)}\)
\(=-1\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
Ta có: x - y - z = 0 \(\Rightarrow\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}\)
\(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(A=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)