K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

#)Giải :

a, Ta có : \(x^2-y^2\ge\frac{\left(x+y\right)^2}{2}=2\)

=> Min = 2 khi x = y = 1

                 

-Trả Lời:

a,Ta có:

      \(x+y=2\)

\(\Rightarrow x^2+2xy+y^2=4\)

\(\Leftrightarrow x^2+y^2=4-2xy\)

\(\Rightarrow4-2xy\)nhỏ nhất

\(\Rightarrow xy\)lớn nhất

Mà \(x+y=2\Rightarrow x,y\)Không thể là 2 số âm

Vì ta cần \(xy\) lớn nhất nên \(x,y\)không thể khác dấu

\(\Rightarrow\)Ta chỉ còn một trường hợp \(x,y\)đều dương và \(x+y=2\)

\(\Rightarrow xy\)lớn nhất khi và chỉ khi \(x=2;y=0\)và \(x=0;y=2\)

@#Chúc bạn học tốt#@

Nhớ k mình nha. Thank you!

Còn phần b mình không biết làm, mong bạn thông cảm.