K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

\(a,x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x-y=1\Rightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3=1\)

\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)

\(\Leftrightarrow x^3-y^3-3xy=1\)

3 tháng 7 2017

a.Từ giả thiết: 
x+y=1. 
=> (x+y)^3=1^3=1 
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT) 
=> x^3+y^3+3xy(x+y)=1 
=> x^3+y^3+3xy.1=1 
<=> x^3+y^3+3xy=1

b.x3-y3-3xy=x3-y3-3xy.1

Mà x-y=1 nên

x3-y3-3xy=x3-y3-3xy(x-y)

x3-y3-3x2y+3xy

=(x-y)3=13=1

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

3 tháng 7 2017

cho mk sửa lại đề chút nhoa:

b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b

3 tháng 7 2017

a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)

=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)

b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)

\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)

\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)

24 tháng 6 2015

ĐÂY NÀY:

( x +y) ^2 = a^2 => x^2 + 2xy + y^2 = a^2 

=> 2xy = a^2 - ( x^2  + y^2) = a^2 -b

=> xy = a^2-b/2

Ta có E = x^3 + y^3 = ( x+ y)(  x^2 - xy + y^2)

 E = a ( b - a^2-b/2)

17 tháng 10 2016

\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)

\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)

\(8x^2+10x-3=0\)

\(8x^2-2x+12x-3=0\)

\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)

\(\left(4x-1\right)\left(2x+3\right)=0\)

\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)

\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)

\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)

\(\left(3x-1\right)\left(x-9\right)=0\)

\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)

20 tháng 10 2016

còn bài cuối thì sao à pn

31 tháng 7 2015

đưa về HĐT rồi thay vài tính

31 tháng 7 2015

a) y3 + 12y2 + 48y + 64

= (y + 4)(y2 - 4y + 16) + 12y(y + 4)

= (y + 4)(y2 - 4y + 16 + 12y)

= (y + 4)(y2 + 8y + 16)

= (y + 4)(y + 4)2

= (y + 4)3

b) y3 - 6y2 + 12y - 8

= (y - 2)(y2 + 2y + 4) - 6y(y - 2)

= (y - 2)(y2 + 2y + 4 - 6y)

= (y - 2)(y2 - 4y + 4)

= (y - 2)(y - 2)2

= (y - 2)3

1 tháng 8 2015

a; y^3 + 12y^2 + 48y + 46 

= y^3 + 3 . 4 . y^2 + 3 . 16 . y + 64 - 18

= ( y + 8 )^3 - 18

= ( 6 + 8)^3 - 18 

= 14^3 - 18 

Cái 46 phải là 64 thì phải 

b, = ( y - 2)^3 = ( 22 - 2 )^3 = 20^3 = 8000