Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 - 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
Theo bất đẳng thức tam giác ABC ta có:
AC + BC > AB > AC - BC
hay 7 + 1 > AB > 7 - 1
8 > AB > 6
=> AB = 7 vì 8 > 7 > 6.
Vậy AB = 7cm.
Vì AB = AC = 7cm nên tam giác ABC là tam giác cân và cân tại A.
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
Theo bất đẳng thức tam giác và hệ quả ta có:
AB - AC < BC < AB + AC (1)
Thay AB = 4cm, AC = 1cm vào (1) ta có:
4 - 1 < BC < 4 + 1 ⇔ 3 < BC < 5
Vì độ dài cạnh BC là một số nguyên nên BC = 4cm.
Theo bất đẳng thức tam giác,ta có : \(AC-AB< BC< AC+AB\)
hay \(8-1< BC< 8+1\)hay \(7< BC< 9\)
Vì số đo độ dài cạnh BC là số nguyên nên BC = 8(cm)
Tam giác ABC có \(CA=CB\left(=8cm\right)\)nên tam giác ABC là tam giác cân ở đỉnh C.
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Thay BC = 1cm, AC = 7cm, ta được:
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên (cm) thỏa mãn (1) nên AB = 7cm
Do đó ΔABC cân tại A vì AB = AC = 7cm.
* Cách dựng tam giác ABC
- Vẽ BC = 1cm
- Dựng đường tròn tâm B bán kính 7cm ; đường tròn tâm C bán kính 7cm. Hai đường tròn cắt nhau tại A.
Theo bất đẳng thức tam giác ABC có :
Có AC–BC<AB<AC+BC
có 7–1<AB<7+1
6<AB<8 (1)
Vì độ dài AB là số nguyên thỏa mãn với (1) nên AB = 7 cm
Do đó ∆ ABC là tam giác cân vì nó cân tại a và có AB= AC = 7 cm
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
7 – 1 < CA < 7 + 1
6 < CA < 8
Mà CA là số nguyên
CA = 7 cm.
Vậy CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
AB + CA > BC
2 + CA > 6
CA > 4 cm
Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)
CA = 5 cm
Vậy CA = 5 cm.