Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bởi vì cứ 10 số tự nhiên liên tiếp là lại có một số chia
hết cho 10
Bạn đọc kỹ đề đi, người ta bảo là 10 số bất kỳ chứ có phải là liên tiếp đâu
Lập dãy số . Đặt B1 = a1. B2 = a1 + a2 . B3 = a1 + a2 + a3 ................................... B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm). Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Lập dãy số . Đặt B1 = a1. B2 = a1 + a2 . B3 = a1 + a2 + a3 ................................... B10 = a1 + a2 + ... + a10 . Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm). Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Đặt S1=a1
S2=a1 + a2
.............
S10=a1+a2+...+a10
+, Nếu 1 trong 10 tổng trên chia hết cho 10 thì ta có đpcm
+, Nếu không có tổng nào chia hết cho 10 thì luôn tồn tại 2 tổng chia 10 có cùng số dư khi chia 10 ( theo nguyên lí DDirrichle )
Suy ra hiêu của 2 tổng đó chia hết cho 10 ( đó là tổng của 1 hay 1 số số trong dãy )-đpcm
Câu hỏi của Lê Minh Đạo - Toán lớp 6 - Học toán với OnlineMath
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 ...
Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : ...
+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10
(đpcm) ...
+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng
giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) ...
Sm = a1+a2+ ... + a(m) ..
.Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) ...
---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 ...
---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)