K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-4=0\)

\(\Leftrightarrow3x^2-2mx-8=0\)

ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)

hay m=6 hoặc m=-6

11 tháng 5 2022

giúp mình cả câu a được k bạn ._.

a: khi m=2 thì (d): y=4x-2^2+1=4x-3

PTHĐGĐ:

x^2-4x+3=0

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

b: PTHĐGĐ là;

x^2-2mx+m^2-1=0

Δ=(-2m)^2-4(m^2-1)=4>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

2y1+4m*x2-2m^2-3<0

=>2(2mx1-m^2+1)+4m*x2-2m^2-3<0

=>4m*x1-2m^2+2+4m*x2-2m^2-3<0

=>-4m^2+4m*(x1+x2)-1<0

=>-4m^2+4m*(2m)-1<0

=>-4m^2+8m-1<0

=>\(\left[{}\begin{matrix}m< \dfrac{2-\sqrt{3}}{2}\\m>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)

22 tháng 5 2021

Xét pt hoành độ gđ của (d) và (P) có:

\(x^2=2x+4m^2-8m+3\)

\(\Leftrightarrow x^2-2x-4m^2+8m-3=0\) (1)

\(\Delta=4-4\left(-4m^2+8m-3\right)\)\(=16m^2-32m+16=16\left(m-1\right)^2\)

Để (P) và (d) cắt nhau tại hai điểm pb khi pt (1) có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m\ne1\)

Có \(A\in\left(P\right)\Rightarrow y_1=x_1^2\)

\(B\in\left(P\right)\Rightarrow y_2=x_2^2\) , trong đó x1; x2 là hai nghiệm của pt (1)

Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-4m^2+8m-3\end{matrix}\right.\)

\(y_1+y_2=10\)

\(\Leftrightarrow x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4-2\left(-4m^2+8m-3\right)=10\)

\(\Leftrightarrow8m^2-16m=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)(tm)

Vậy...

 

21 tháng 5 2019

Khi m =3 

=> hàm số trở thành y=2x-3+3=2x

Hoành độ giao điểm (p) và (d) là nghiệm pt 

\(x^2=2x\)

<=> x2-2x=0

<=> x(x-2)=0

<=> x=0 hoặc x=2

với x=0 thay vào (P) ta có y=02=0

với x=2thay vào (P) ta có  y=22=4

Vậy (P) và (d) cắt nhau tại 2 điểm có tọa độ (0;0)và (2;4) khi m =3

b) Hoành độ giao điểm (p) và (d) là nghiệm pt 

\(x^2=2x-m+3\)

\(x^2-2x+m-3=0\)

ta có \(\Delta\)=\(2^2-4\left(m-3\right)\)=\(4-4m+12\)

                                                       =\(16-4m\)

Để (p) và (d ) cắt nhau tại 2 điểm phân biệt thì 16-4m>0 hay m<4

Theo Vi ét ta có x1+x2=2

                           x1.x2=m-3

Và y1=x12; y2=x22

Khi đó x1.x2.( y1+y2)=-6

<=> (m-3) . ( x12+x22)=-6

<=> (m-3). ((x1+x2)2-2x1x2)=-6

<=> (m-3). (4-2m+6)=-6 

 Tự lm nốt nha bn ! ( mk mỏi tay quá :) ) ( nhớ k mk đấy )

PTHĐGĐ là:

1/2x^2=2x-a+1

=>x^2=4x-2a+2

=>x^2-4x+2a-2=0

Δ=(-4)^2-4(2a-2)

=16-8a+8=-8a+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8a+24>0

=>-8a>-24

=>a<3

x1x2(y1+y2)+48=0

=>(2a-2)*[(x1)^2+(x2)^2]+48=0

\(\Leftrightarrow\left(2a-2\right)\cdot\left[4^2-2\left(2a-2\right)\right]+48=0\)

=>\(\left(2a-2\right)\left(16-4a+4\right)+48=0\)

=>\(\left(2a-2\right)\left(-4a+20\right)+48=0\)

=>\(2\left(a-2\right)\cdot\left(-4\right)\cdot\left(a-5\right)+48=0\)

=>(a-2)(a-5)=-48/-8=6

=>a^2-7a+10-6=0

=>a^2-7a+4=0

=>\(a=\dfrac{7\pm\sqrt{33}}{2}\)

5 tháng 6 2023

b) Phương trình hoành độ giao điểm của (P) và (d):

x² = mx - m + 1

⇔ x² - mx + m - 1 = 0

∆ = m² - 4.1.(m - 1)

= m² - 4m + 4

= (m - 2)² ≥ 0 với mọi m ∈ R

⇒ Phương trình luôn có hai nghiệm

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁x₂ = m - 1 (2)

Lại có x₁ + 3x₂ = 7  (3)

Từ (1) ⇒ x₁ = m - x₂ (4)

Thay x₁ = m - x₂ vào (3) ta được:

m - x₂ + 3x₂ = 7

2x₂ = 7 - m

x₂ = (7 - m)/2

Thay x₂ = (7 - m)/2 vào (4) ta được:

x₁ = m - (7 - m)/2

= (2m - 7 + m)/2

= (3m - 7)/2

Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:

[(3m - 7)/2] . [(7 - m)/2] = m - 1

⇔ 21m - 3m² - 49 + 7m = 4m - 4

⇔ 3m² - 28m + 49 + 4m - 4 = 0

⇔ 3m² - 24m + 45 = 0

∆' = 144 - 3.45 = 9 > 0

Phương trình có hai nghiệm phân biệt:

m₁ = (12 + 3)/3 = 5

m₂ = (12 - 3)/3 = 3

Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7

 

a: Thay x=0 và y=2 vào (d), ta được:

1-m=2

=>m=-1

29 tháng 4 2021

Xét phương trình hoành độ giao điểm của (d) và (P) ta có:

       x2 = 2x + m - 1

<=> x2 - 2x - m + 1 = 0

\(\Delta'=\left(-1\right)^2-\left(-m-1\right)=1+m+1=2+m\)

Để pt có 2 nghiệm phân biệt <=> \(\Delta'>0\)  <=> 2 + m > 0  <=> m > -2

Theo hệ thức Viét, ta có:  \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-m+1\end{matrix}\right.\)

Theo đề bài:  x13- x2+ x1.x= 4

<=> (x+ x2)3 - 3x1.x(x+ x2) + x1.x= 4

Thay: 23 - 3(-m + 1). 2 + (-m + 1) = 4

<=> 8 + 6m - 6 - m + 1  - 4 = 0

<=> -1 + 5m = 0

<=> m = \(\dfrac{1}{5}\)

Vậy để m = \(\dfrac{1}{5}\) thì x1- x2+ x1.x= 4

 

 

 

1 tháng 5 2021

sai rồi bn: x13+x23=(x+ x2)3 - 3x1.x(x+ x2)